We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Single Molecule Visualization Technique Reveals the Structural Dynamics of Telomere Maintenance

By LabMedica International staff writers
Posted on 12 Dec 2012
Print article
A recently developed technique for observing single molecules has provided new insights into the structural dynamics involved in the regulation of telomeres.

A telomere is a region of repetitive nucleotide sequences at each end of a chromosome, which protects the end of the chromosome from deterioration or from fusion with neighboring chromosomes. Telomere regions deter the degradation of genes near the ends of chromosomes by allowing chromosome ends to shorten, which necessarily occurs during chromosome replication. Human telomeres possess a single-stranded DNA (ssDNA) overhang of TTAGGG repeats, which can self-fold into a G-quadruplex structure. Overexpression in cancer cells of the enzyme telomerase, which adds length to telomeres, allows them to divide in perpetuity.

Investigators at the University of Illinois (Urbana; USA) recently developed a single molecule fluorescence assay termed Protein Induced Fluorescence Enhancement (PIFE) and calibrated it on several protein systems. This method circumvented protein labeling and displayed marked distance dependence in the range below four nanometers. The enhancement of fluorescence was based on the photophysical phenomenon whereby the intensity of a fluorophore increased upon proximal binding of a protein. Their data revealed that the method could resolve as little as a single base pair distance at the extreme vicinity of the fluorophore, where the enhancement was maximized.

In the current study, the investigators used the PIFE system to analyze the behavior of the enzyme POT1 (protection of telomeres 1), a nuclear protein that functions as a member of a multiprotein complex that binds to the TTAGGG repeats of telomeres, regulating telomere length and protecting chromosome ends from illegitimate recombination, catastrophic chromosome instability, and abnormal chromosome segregation. In particular, they examined the relationship between POT1 and its partner enzyme TPP1 (tripeptidyl-peptidase 1).

They reported in the September 13, 2012, online edition of the journal Structure that POT1 bound specifically to the telomeric overhang and partnered with TPP1 to regulate telomere lengthening and capping. POT1 bound stably to folded telomeric G-quadruplex DNA in a sequential manner, one oligonucleotide/oligosaccharide binding fold at a time. POT1 bound from 3′ to 5′, thereby unfolding the G-quadruplex in a stepwise manner. In contrast, the POT1-TPP1 complex induced a continuous folding and unfolding of the G-quadruplex. The PIFE technique revealed that POT1-TPP1 slid back and forth on telomeric DNA and also on a mutant telomeric DNA to which POT1 could not bind alone.

“Instead of stepwise binding, what we saw was a mobile protein complex, a dynamic sliding motion,” said senior author Dr. Sua Myong, assistant professor of bioengineering at the University of Illinois. “Somehow it was as if the static binding activity of POT-1 is completely lost – the protein complex just slid back and forth. We were able to reproduce the data and confirm it with many different tail lengths of the telomeric DNA, and we know now that the contact between POT-1 and the telomere is somehow altered when the partner protein comes and binds.”

“We are excited about the possibility that this kind of mobility can increase the telomerase extension activity,” said Dr. Myong. “It is somehow engaging the enzyme so that it can stay bound to the DNA longer, so it must involve a direct interaction. We want to extend our basic science knowledge in telomere biology into causes of cancer and we hope that our assay can be useful for telomere-targeted drug screening.”

Related Links:
University of Illinois

New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Automated Blood Typing System
IH-500 NEXT
New
Urine Drug Test
Instant-view Methadone Urine Drug Test
New
Automated Cell Counter
QuadCount

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Immunology

view channel
Image: An immune response is initiated when an antigen-presenting cell (pink) presents foreign material to a T-cell (blue) (Photo courtesy of JAX)

Advanced Imaging Method Maps Immune Cell Connections to Predict Cancer Patients Survival

A growing tumor is influenced not only by the tumor cells themselves but also by the surrounding tissue, which alters its biology. Immune cells communicate by transferring vital signaling proteins to their... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image: LMU’s Professor Frederick Klauschen developed the novel approach that can improve diagnostic accuracy (Photo courtesy of LMU Munich)

AI Tool Uses Imaging Data to Detect Less Frequent GI Diseases

Artificial intelligence (AI) is already being utilized in various medical fields, demonstrating significant potential in aiding doctors in diagnosing diseases through imaging data. However, training AI... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.