We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Computer Simulation and Knotted Chain Technology Yield Virtual Synthetic Proteins

By LabMedica International staff writers
Posted on 28 Feb 2013
Print article
Image: The self-knotted structure of the bionic protein (Copyright: Ivan Coluzza).
Image: The self-knotted structure of the bionic protein (Copyright: Ivan Coluzza).
Accessing a powerful computer complex, a team of Austrian physicists has developed virtual synthetic proteins as the first step to the in vitro synthesis of fully active "bionic proteins."

Physicists at the University of Vienna (Austria) together with investigators at the University of Natural Resources and Life Sciences (Vienna, Austria) exploited the computing power of The Vienna Scientific Cluster (Austria)—a pool of high-performance computing resources that covers the computing demands of four different Universities: the University of Vienna, Vienna University of Technology, the University of Natural Resources and Applied Life Science, and the Graz University of Technology—to develop a virtual mechanism for the construction of proteins from colloidal particles.

The "knotted chain" methodology, which was fully described in the February 11, 2013, issue of the journal Physical Review Letters, was used to construct self-assembling chains of simple particles, with final structures fully controlled by the sequence of particles along the chain. The individual particles forming the chain were colloids decorated with mutually interacting patches, which can be manufactured in the laboratory with current technology.

The methodology was applied to the design of sequences folding into self-knotting chains, in which the end monomers were by construction always close to each other in space. The knotted structure could then be externally locked simply by controlling the interaction between the end monomers, paving the way to applications in the design and synthesis of active materials and novel carriers for drugs delivery.

"Imitating these astonishing bio-mechanical properties of proteins and transferring them to a fully artificial system is our long term objective,” said first author Dr. Ivan Coluzza, research in the physics department at the University of Vienna.

Related Links:

University of Vienna
University of Natural Resources and Life Sciences
The Vienna Scientific Cluster


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
New
Ross River Virus Test
Ross River Virus Real Time PCR Kit
New
DNA Extraction Kit
Ron’s Gel Extraction Mini Kit

Print article

Channels

Molecular Diagnostics

view channel
Image: A coronal MRI section shows a high-intensity focused ultrasound lesion in the left thalamus of the brain (Photo courtesy of UT Southwestern Medical Center)

Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries

Each year, nearly 800,000 individuals in the U.S. experience a stroke, which occurs when blood flow to specific areas of the brain is insufficient, causing brain cells to die due to a lack of oxygen.... Read more

Immunology

view channel
Image: The discovery of biomarkers could improve endometrial cancer treatment (Photo courtesy of Mount Sinai)

Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer

Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read more

Pathology

view channel
Image: As tumor cells flow through these microfluidic chambers, they are subjected to increasing shear stress and sorted based on their adhesion strength (Photo courtesy of UC San Diego)

Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread

Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.