We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




New Cancer Research Microarray Detects CNVs and LOH on a Single Chip

By LabMedica International staff writers
Posted on 01 Apr 2013
Print article
Image: The CytoSure Cancer +SNP array (4 x 180k) from Oxford Gene Technology (Photo courtesy of Oxford Gene Technology.)
Image: The CytoSure Cancer +SNP array (4 x 180k) from Oxford Gene Technology (Photo courtesy of Oxford Gene Technology.)
A novel, optimized cytogenetic cancer research microarray system enables reliable, simultaneous detection of both copy number variations (CNVs) and loss of heterozygosity (LOH), and includes software designed to facilitate superior data analysis and interpretation.

Oxford Gene Technology (OGT; Oxfordshire, UK) introduces the “CytoSure Cancer +SNP array” designed to improve the accuracy and efficiency of molecular cancer research. The new microarray combines long oligo array comparative genomic hybridization (aCGH) probes with fully validated single nucleotide polymorphism (SNP) content, providing the superior detection of both CNVs) and LOH on a single chip (4 arrays of 180k spots). The array has been optimized in collaboration with Prof. Jacqueline Schoumans from the Lausanne University Hospital (Switzerland), an expert in both aCGH and cancer genomics. Unique to the proprietary CytoSure Cancer +SNP array, any reference sample can be used for analysis without changes to the standard aCGH protocol and, thanks to novel SNP probe chemistry, no restriction digest is required. The capacity to use matched samples is a particular advantage for research into genetic aberrations in cancer, enabling any constitutional abnormalities to be filtered out.

Prof. Schoumans commented, “The development of a new microarray with the capacity to detect both CNVs and LOH simultaneously was vital for improving the efficiency and quality of our research. By working very closely with the technical experts at OGT, we have constructed a new array that allows users to simultaneously screen a wide genomic background for CNVs and LOH, while also enabling in-depth CNV analysis on 1,500 known cancer-associated genes. This approach produces accurate and insightful data, with all aberrations clearly highlighted and filtered using OGT’s excellent CytoSure Interpret Software.”

“The new CytoSure Cancer +SNP array forms part of OGT’s ongoing strategy to design specialized microarrays to help increase our understanding of cancer formation and development [and to facilitate] research into more efficacious, targeted treatments,” added James Clough, Executive Vice President Commercial at OGT. The 60-mer oligonucleotide probes utilized in the array provide a high signal-to-noise ratio and highly sensitive detection; this makes them ideal for research into complex malignant tissues. With OGT’s innovative CytoSure Interpret Software, data analysis is rapid, reliable, and simple to carry out, including updated features (such as the B-allele frequency plot) that have been optimized for the identification of biologically relevant genomic variants in tumor samples.

Related Links:
Oxford Gene Technology
CytoSure Cancer +SNP array
CytoSure Interpret Software


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Leishmania Test
Leishmania Real Time PCR Kit
New
Quantitative Immunoassay Analyzer
AS050

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: Heart attacks could be ruled out early with a new test, according to researchers (Photo courtesy of Mindray)

New High-Sensitivity Cardiac Troponin Test Quickly Rules Out Heart Attack

Patients arriving at an emergency department with symptoms like chest or arm pain, indicative of a potential heart attack, often prefer the comfort of home over a hospital bed—especially if they can be... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Immunology

view channel
Image: An immune response is initiated when an antigen-presenting cell (pink) presents foreign material to a T-cell (blue) (Photo courtesy of JAX)

Advanced Imaging Method Maps Immune Cell Connections to Predict Cancer Patients Survival

A growing tumor is influenced not only by the tumor cells themselves but also by the surrounding tissue, which alters its biology. Immune cells communicate by transferring vital signaling proteins to their... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image: LMU’s Professor Frederick Klauschen developed the novel approach that can improve diagnostic accuracy (Photo courtesy of LMU Munich)

AI Tool Uses Imaging Data to Detect Less Frequent GI Diseases

Artificial intelligence (AI) is already being utilized in various medical fields, demonstrating significant potential in aiding doctors in diagnosing diseases through imaging data. However, training AI... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.