We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Blocking Constant Interferon Signaling Allows the Immune System to Clear Chronic Viral Infections

By LabMedica International staff writers
Posted on 23 Apr 2013
Print article
Blocking constant Type I interferon (IFN-I) signaling in mice diminished chronic immune activation and immune suppression and enabled the animals' immune system to rejuvenate and ultimately clear persistent viral infections.

Interferons (IFNs) are glycoprotein cytokines made and released by host cells in response to the presence of pathogens such as viruses, bacteria, parasites, or tumor cells. They allow for communication between cells to trigger the protective defenses of the immune system that eradicate pathogens or tumors. Interferons were named after their ability to "interfere" with viral replication within host cells. IFNs have other functions: they activate immune cells, such as natural killer cells and macrophages; they increase recognition of infection or tumor cells by up-regulating antigen presentation to T-lymphocytes; and they increase the ability of uninfected host cells to resist new viral infection. Certain symptoms, such as aching muscles and fever, are related to the production of IFNs during infection. While Type I interferons (IFN-I) are critical for antiviral immunity, chronic IFN-I signaling is associated with hyperimmune activation and disease progression in persistent infections.

Investigators at the University of California, Los Angeles (USA) injected mice suffering from chronic viral infections with an antibody that temporarily blocked IFN-I activity.

They reported in the April 12, 2013, issue of the journal Science that the blockade of IFN-I signaling diminished chronic immune activation and immune suppression, restored lymphoid tissue architecture, and increased immune parameters associated with control of virus replication, ultimately facilitating clearance of the persistent infection. The accelerated control of persistent infection induced by blocking IFN-I signaling required CD4 T-cells and was associated with enhanced IFN-gamma production.

“When cells confront viruses, they produce Type I interferons, which trigger the immune system’s protective defenses and sets off an alarm to notify surrounding cells,” said senior author Dr. David Brooks, assistant professor of microbiology, immunology, and molecular genetics at the University of California, Los Angeles. “Type-I interferon is like the guy in the watch tower yelling, "Red alert,” when the marauders try to raid the castle.”

“What we saw was entirely illogical,” said Dr. Brooks. “We had blocked something critical for infection control and expected the immune system to lose the fight against infection. Instead, the temporary break in IFN-I signaling improved the immune system’s ability to control infection. Our next task will be to figure out why and how to harness it for therapies to treat humans.”

Related Links:
University of California, Los Angeles


New
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Silver Member
Rubella Infection ELISA
ReQuest RUBELLA IgM ELISA Kit
New
Monkeypox Test
Monkeypox Virus Rapid Antibody Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: Heart attacks could be ruled out early with a new test, according to researchers (Photo courtesy of Mindray)

New High-Sensitivity Cardiac Troponin Test Quickly Rules Out Heart Attack

Patients arriving at an emergency department with symptoms like chest or arm pain, indicative of a potential heart attack, often prefer the comfort of home over a hospital bed—especially if they can be... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Immunology

view channel
Image: An immune response is initiated when an antigen-presenting cell (pink) presents foreign material to a T-cell (blue) (Photo courtesy of JAX)

Advanced Imaging Method Maps Immune Cell Connections to Predict Cancer Patients Survival

A growing tumor is influenced not only by the tumor cells themselves but also by the surrounding tissue, which alters its biology. Immune cells communicate by transferring vital signaling proteins to their... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image: LMU’s Professor Frederick Klauschen developed the novel approach that can improve diagnostic accuracy (Photo courtesy of LMU Munich)

AI Tool Uses Imaging Data to Detect Less Frequent GI Diseases

Artificial intelligence (AI) is already being utilized in various medical fields, demonstrating significant potential in aiding doctors in diagnosing diseases through imaging data. However, training AI... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.