We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Supercomputer Offers Advanced Algorithms to Develop Predictive Models of Disease

By LabMedica International staff writers
Posted on 29 Apr 2013
Print article
After one year of operation, a USD 3 million supercomputer is a large step forward in constructing a substantial computational and data-intensive infrastructure designed specifically for genomics.

Mount Sinai Hospital (New York, NY, USA) is one of the first academic medical centers in the United States to build and operate a supercomputer. Minerva, named after the Roman goddess of wisdom and medicine, utilizes cutting-edge computer algorithms to develop predictive models of disease that can better help diagnose and treat patients.

Built on-site by Mount Sinai’s department of scientific computing, Minerva analyzes the growing “digital universe,” including genomic and phenotypic data, as well information from electronic medical records (EMRs). It has already analyzed hundreds of human genome sequences with a projection of hundreds of thousands yearly. With thousands of processing cores working together, and tens of terabytes of memory, the supercomputer can perform complicated and sophisticated tasks rapidly and with more precision than ever before.

“With Minerva, Mount Sinai has the ability to quickly analyze genomic patterns to provide a greater understanding of the causes of disease and how to personalize treatments according to an individual’s genetic composition,” said Dennis S. Charney, MD, dean of the Icahn School of Medicine at Mount Sinai. “The supercomputer is able to accomplish real-time visualization of advanced molecular models, promoting drug development and allowing us to test the effects of molecular variations on different receptors in the body.”

The supercomputer also stores data from Mount Sinai’s biobank, called BioME, a collection of over 24,000 individuals’ DNA and plasma samples that are stored in a way that protects patients’ privacy while allowing research to be performed. The biobank accesses a wide range of genetic and environmental data on patients who have agreed to participate throughout their lives.

“The supercomputer is helping us better understand and foresee the course of disease for each patient, and to identify the outcome to a particular therapeutic intervention in advance,” said Patricia Kovatch, associate dean for scientific computing at Mount Sinai Medical Center and the engineer who constructed Minerva. “Thus, using genomic data, information from our biobank as well as complex simulations of molecules, we are able to enhance personalized medicine to a degree that has never been done before.”

Eric Schadt, PhD, Mount Sinai’s director of the Institute for Genomics and Multiscale Biology, cited the need for Minerva in critical areas of research that is already underway. “In order to analyze and integrate all the different data dimensions over the population, and build predictive models of disease, we need the supercomputer. With the infrastructure we’re creating, and the people we’ve recruited, combined with the resources already available at Mount Sinai, we are coming together to form a new epicenter of research on personalized medicine and the new biology.”

“Few research centers have the type of computing infrastructure to allow advanced modeling that Mount Sinai can now do on-site. Along with other advances in genetics and some recent outstanding additions to our faculty, Minerva further cements Mount Sinai’s reputation at the forefront of the ‘precision medicine’ movement,” said Dr. Charney.

Joseph Buxbaum, PhD, director of the Mt. Sinai’s Seaver Autism Center for Research and Treatment, according to Minerva’s supercomputing capacity plays a key role in analyzing data gathered as part of the Autism Sequencing Consortium, a multinational collaboration where all the 22,000 genes in humans will be sequenced in thousands of individuals with autism spectrum disorder. “The consortium plans to have such data for as many as 30,000 people, including controls, over the next three years, and we anticipate that this will result in the discovery of several hundred autism genes. Without Minerva’s computational power, a project of this scope would simply not be feasible.”

To date, tens of millions of core processing hours of research has been performed by Minerva, added Dr. Kovatch. “The computer has helped scientists publish over 25 research articles. Minerva helps scientists analyze their data quicker than ever before, as well as complete more complex tasks simultaneously. The end result is that more science, even basic science, is done quicker and more efficiently.”

Related Links:
Mount Sinai Hospital



Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
New
Monkeypox Test
Monkeypox Virus Rapid Antibody Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: Heart attacks could be ruled out early with a new test, according to researchers (Photo courtesy of Mindray)

New High-Sensitivity Cardiac Troponin Test Quickly Rules Out Heart Attack

Patients arriving at an emergency department with symptoms like chest or arm pain, indicative of a potential heart attack, often prefer the comfort of home over a hospital bed—especially if they can be... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Immunology

view channel
Image: An immune response is initiated when an antigen-presenting cell (pink) presents foreign material to a T-cell (blue) (Photo courtesy of JAX)

Advanced Imaging Method Maps Immune Cell Connections to Predict Cancer Patients Survival

A growing tumor is influenced not only by the tumor cells themselves but also by the surrounding tissue, which alters its biology. Immune cells communicate by transferring vital signaling proteins to their... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image: LMU’s Professor Frederick Klauschen developed the novel approach that can improve diagnostic accuracy (Photo courtesy of LMU Munich)

AI Tool Uses Imaging Data to Detect Less Frequent GI Diseases

Artificial intelligence (AI) is already being utilized in various medical fields, demonstrating significant potential in aiding doctors in diagnosing diseases through imaging data. However, training AI... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.