We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Disrupted Micronuclei Cited as Potential Non-Small-Cell Lung Cancer Biomarkers

By LabMedica International staff writers
Posted on 16 Jul 2013
Print article
Cancer researchers have found that collapse of the nuclear membrane that surrounds micronuclei—bits of the genome that become detached during cell replication—may allow these damaged segments of DNA to reenter the cell's genetic material with possible cancer-causing consequences.

Investigators at the Salk Institute for Biological Sciences (La Jolla, CA, USA) worked with cultures of non-small-cell lung cancer (NSCLC) cells. They reported in the July 3, 2013, issue of the journal Cell that micronuclei, which were sometimes generated when these cells replicated, had reduced functioning compared to primary nuclei in the same cell, although the two compartments appeared to be structurally comparable. Over 60% of micronuclei were found to undergo an irreversible loss of compartmentalization during interphase due to collapse of their nuclear envelope.

The disruption of the micronuclei, which was induced by defects in nuclear lamina assembly, drastically reduced nuclear functions and had the potential to trigger massive DNA damage. Disruption of micronuclei was associated with chromatin compaction and invasion of endoplasmic reticulum (ER) tubules into the chromatin.

Disrupted micronuclei were detected in both major subtypes of NSCLC, suggesting that this feature could be a useful objective biomarker for genomic instability in solid tumors.

"Our study shows that more than 60% of micronuclei undergo catastrophic dysfunction in solid tumors such as NSCLC," said senior author Dr. Martin Hetzer, professor of molecular and cell biology at the Salk Institute for Biological Sciences. "We identified disrupted micronuclei in two major subtypes of human non-small-cell lung cancer, which suggests that they could be a valuable tool for cancer diagnosis."

Related Links:
Salk Institute for Biological Sciences


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
New
Gold Member
ZIKA Virus Test
ZIKA ELISA IgG
New
Chagas Disease Test
Simple/Stick Chagas/WB
New
Borrelia Burgdorferi Test
AESKULISA Borrelia-M

Print article

Channels

Microbiology

view channel
Image: The test covers the most important bacterial pathogens across all age groups with a single cartridge (Photo courtesy of BHCS)

POC PCR Test Rapidly Detects Bacterial Meningitis Directly at Point of Sample Collection

Meningitis is an inflammation of the membranes surrounding the brain and spinal cord. Pathogens typically enter the body through the respiratory tract and spread via the bloodstream. The infection can... Read more

Pathology

view channel
Image: The technique predicts how well some breast cancer patients will respond to chemotherapy (Photo courtesy of Shutterstock)

New Technique Predicts Tumor’s Responsiveness to Breast Cancer Treatment

Breast cancer is the most common cancer among women worldwide, with 2.3 million new cases diagnosed each year. In the era of personalized medicine, targeted therapies for different types of breast cancer... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more

Industry

view channel
Image: The game-changing immunoassay diagnostics platform delivers results from whole blood sample in 10 minutes (Photo courtesy of SpinChip)

bioMérieux Acquires Norwegian Immunoassay Start-Up SpinChip Diagnostics

bioMérieux (Marcy l’Étoile, France) has agreed to acquire SpinChip Diagnostics (Oslo, Norway), the developer of a game-changing immunoassay diagnostics platform. The small benchtop analyzer is well adapted... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.