We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Synthetic Antibiotic Kills Bacteria and Prevents Biofilm Formation

By LabMedica International staff writers
Posted on 14 Nov 2013
Print article
Image: Scanning electron micrograph of Gram-negative bacteria. In recent years, the efficacy of antibiotics has been drastically reduced due to increasing bacterial resistance (Photo courtesy of the University of Copenhagen).
Image: Scanning electron micrograph of Gram-negative bacteria. In recent years, the efficacy of antibiotics has been drastically reduced due to increasing bacterial resistance (Photo courtesy of the University of Copenhagen).
The peptidomimetic compound HDM-4 (Host Defence Peptidomimetic 4) exhibits broad-spectrum antibacterial activity against Gram-negative bacteria and inhibits the formation of biofilms.

A peptidomimetic is a small protein-like molecular chain designed to mimic a peptide. They typically arise either from modification of an existing peptide, or by designing similar systems that mimic peptides, such as peptoids and beta-peptides. The altered chemical structure is designed to favor molecular properties increasing stability or biological activity. These modifications involve changes to the peptide that will not occur naturally (such as altered backbones or the incorporation of non-natural amino acids).

Investigators at the University of Copenhagen (Denmark) and their colleagues at the University of British Columbia (Canada) recently characterized HDM-4's mode of action against Gram-negative bacteria.

They reported in the October 10, 2013, issue of the journal Chemistry & Biology that HDM-4 generated holes in the outer membrane and partly depolarized the inner membrane at its minimal inhibitory concentration (MIC). In addition, HDM-4 rapidly became distributed within the bacterial cell at lethal concentrations that could bind to DNA.

The multimodal action of HDM-4 resulted in it being less likely to lead to resistance development as compared to single-target antibiotics. The compound exhibited multispecies anti-biofilm activity at sub-MIC levels. Furthermore, HDM-4 modulated the host's immune response by inducing the release of the chemoattractants interleukin-8 (IL-8), monocyte chemotactic protein-1 (MCP-1), and MCP-3 from human peripheral blood mononuclear cells. Additionally, the compound suppressed lipopolysaccharide-mediated inflammation by reducing the release of the proinflammatory cytokines IL-6 and tumor necrosis factor-alpha (TNF-alpha).

“We have succeeded in preparing and characterizing a very stable substance that kills multiresistant bacteria extremely quickly and effectively. The most interesting aspect is that the bacteria are attacked using a multifunctional mechanism that drastically reduces the risk of resistance development compared with traditional antibiotics,” said first author Dr. Rasmus Jahnsen, a researcher on drug design and pharmacology at the University of Copenhagen. “The killing mechanism involves destabilizing the bacterial membrane and binding onto the bacteria’s DNA, which in both cases results in the death of the bacteria. We have also shown that the substance can activate the human body’s own immune cells, strengthening its defense against bacteria during infection.”

“Only a tiny fraction of pharmaceutical research is devoted to development of new antibiotics — partly because research into cancer and chronic diseases such as diabetes and cardiovascular diseases are seen as better long-term investments. This leaves us in the extremely unfortunate situation where infectious diseases once again pose extremely serious threats to human health as the efficacy of medical drugs continues to be undermined by bacterial resistance. It is therefore important to conduct more research into new antibiotics,” said Dr. Jahnsen.

Related Links:

University of Copenhagen
University of British Columbia


Gold Member
Hematology Analyzer
Swelab Lumi
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Tabletop Centrifuge
Mikro 185
New
Urine Strips
11 Parameter Urine Strips

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.