We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Tumor Growth Blocked in Mice by Suppressing Antioxidants in Cancer Cells

By LabMedica International staff writers
Posted on 11 Dec 2013
Print article
Many cancers have adapted to deal with the high levels of immune system-produced free radicals, also referred to as reactive oxygen species, by overproducing antioxidant proteins. One of these proteins, superoxide dismutase 1 (SOD1), is overproduced in lung adenocarcinomas and has been implicated as a target for chemotherapy.

In the December 2, 2013, issue of the Journal of Clinical Investigation, Dr. Navdeep Chandel and colleagues from Northwestern University (Evanston, IL, USA) reported the effects of a SOD1 pharmacologic suppressor on non-small-cell lung cancer (NSCLC) cells. The inhibitor, called ATN-224, blocked the growth of human NSCLC cells in culture, and triggered their death. The researchers also discovered that ATN-224 inhibited other antioxidant proteins, which caused high levels of hydrogen peroxide inside the cells. Cancer cells’ capability to generate hydrogen peroxide was required for ATN-224-dependent effects, because hydrogen peroxide activated cell death pathways.

ATN-224, moreover, triggered cancer cell death and decreased tumor sizes in a mouse model of lung adenocarcinoma. ATN-224-dependent effects in lab mice were enhanced when the inhibitor was used in combination with another drug that activates programmed cell death.

These new findings indicate that antioxidant suppression may be a feasible chemotherapeutic strategy.

Related Links:

Northwestern University


New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Silver Member
Oncology Molecular Diagnostic Test
BCR-ABL Dx ELITe MGB Kit
New
Vibrio Cholerae O1/O139 Rapid Test
StrongStep Vibrio Cholerae O1/O139 Antigen Combo Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.