We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Microsystem Reduces Cost of Developing Ion Channel Drugs

By LabMedica International staff writers
Posted on 11 Dec 2013
Print article
Image: Schematic diagram of an ion channel. 1 - channel domains (typically four per channel), 2 - outer vestibule, 3 - selectivity filter, 4 - diameter of selectivity filter, 5 - phosphorylation site, 6 - cell membrane (Photo courtesy of Wikimedia Commons).
Image: Schematic diagram of an ion channel. 1 - channel domains (typically four per channel), 2 - outer vestibule, 3 - selectivity filter, 4 - diameter of selectivity filter, 5 - phosphorylation site, 6 - cell membrane (Photo courtesy of Wikimedia Commons).
The use of a microsystem that generates ion channels in a cell-free medium is expected to boost development of drugs that target these channels in the treatment of diseases such as cystic fibrosis, myasthenia gravis, and epilepsy.

The effect of drugs on ion channels is currently studied by electrophysiology, which measures an electric current across ion channel proteins. This, however, is a slow and expensive process that is carried out using ion channels in living cell membranes.

In a paper published in the October 18, 2013, online edition of the journal Analyst, investigators at the University of Southampton (United Kingdom) in collaboration with colleagues at the University of Quebec (Montreal, Canada) described the development of a cell-free expression mixture that allows ion channels to be inserted into stable artificial "cell membranes."

Results of the study showed that single-channel current measurements of the potassium channels KcsA and hERGS5–S6 could be obtained by direct insertion in interdroplet lipid bilayers from microliters of a cell-free expression medium.

"By putting the ion channel into an artificial membrane, we only have one type of channel, no living cells, and a relatively inexpensive method for testing for several of these types of channels at once," said senior author Dr. Maurits de Planque, lecturer in electronics and computer science at the University of Southampton. "Researchers have experimented with cell-free mixtures before, but they found that this method was not economical due to the amount of expensive biochemicals required. Our proposal to develop a new platform, which uses a couple of microliters instead of milliliters, will be a very cost-effective way of doing this, particularly when the produced channel is directly inserted in a membrane for drug testing."

Related Links:

University of Southampton
University of Quebec


Gold Member
Troponin T QC
Troponin T Quality Control
Automated Blood Typing System
IH-500 NEXT
New
Silver Member
Apolipoprotein A-I Assay
Apo A-I Assay
New
Auto-Chemistry Analyzer
CS-1200

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.