We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Cruzipain Inhibitors Show Potential for Treatment of Chagas Disease

By LabMedica International staff writers
Posted on 08 Jan 2014
Print article
Image: Trypanosoma cruzi in blood smear from patient with trypanosomiasis (Photo courtesy of the CDC – [US] Centers for Disease Control and Prevention).
Image: Trypanosoma cruzi in blood smear from patient with trypanosomiasis (Photo courtesy of the CDC – [US] Centers for Disease Control and Prevention).
A new generation of antiparasitic drugs based on inhibitors of the enzyme cruzipain has been shown to have potential for more effective treatment of the chronic form of Chagas disease.

Chagas disease or American trypanosomiasis, caused by the parasite Trypanosoma cruzi, affects about 18 million people living mostly in Latin America.

The current drug of choice for treating Chagas is benznidazole. Its mechanism of action is the production of free radicals, to which the T. cruzi is particularly sensitive. Benznidazole has a significant activity during the acute phase of the disease, with a success rate of up to 80%. Its curative capabilities during the chronic phase are, however, limited. Some studies have found parasitologic cure (a complete elimination of T. cruzi from the body) in pediatric and young patients during the early stage of the chronic phase, but overall failure rate in chronically infected individuals is typically above 80%.

Investigators at the Merck Frosst Center for Therapeutic Research (Kirkland, QC, Canada) focused on a different approach to killing T. cruzi: inhibition of the enzyme cruzipain. This enzyme is a cysteine proteinase that hydrolyzes chromogenic peptides at the carboxyl arginine or lysine residue. It requires at least one more amino acid between the terminal arginine or lysine and the amino-blocking group. The purified enzyme digests itself. The enzyme plays a critical role in the development and differentiation of T. cruzi.

The investigators treated mice with acute T. cruzi infection with oral doses of two key cruzipain inhibitors, Cz007 and Cz008, in chow for 28 days. Parasite presence in blood, heart, and esophagus was evaluated.

Results published in the December 9, 2013, online edition of the journal Antimicrobial Agents and Chemotherapy revealed that based on negative qPCR in all three tissues, cure rates in surviving animals were 90% for Cz007, 78% for Cz008, and 71% for benznidazole, the control compound.

"The efficacy shown in these T. cruzi murine studies suggests that nitrile-containing cruzipain inhibitors show promise as a viable approach for a safe and effective treatment of Chagas disease," said senior author Dr. Deborah Nicoll-Griffith, a researcher at the Merck Frosst Center for Therapeutic Research. "While historically infection was largely confined to poor and rural populations in Central and South America, it has been emerging in the US, Canada, Europe, Japan, and Australia, due to immigration, and nonvectorial transmission is becoming a public health threat."

Related Links:

Merck Frosst Center for Therapeutic Research



Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Automated Blood Typing System
IH-500 NEXT
New
Automatic Biochemistry Analyzer
Audmax 180 Evolution
New
Silver Member
Oncology Molecular Diagnostic Test
BCR-ABL Dx ELITe MGB Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.