We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Growth and Spread of Ovarian Cancer Mediated by a Specific MicroRNA

By LabMedica International staff writers
Posted on 22 Jan 2014
Print article
Cancer researchers have linked the gene silencing activity of a specific microRNA (miRNA) to TGF-beta (transforming growth factor beta)-mediated molecular pathways that support the growth and spread of ovarian cancer.

MicroRNAs (miRNAs) are a small noncoding family of 19- to 25-nucleotide RNAs that regulate gene expression by targeting mRNAs in a sequence specific manner, inducing translational repression or mRNA degradation, depending on the degree of complementarity between miRNAs and their targets. Many miRNAs are conserved in sequence between distantly related organisms, suggesting that these molecules participate in essential processes. In fact, miRNAs have been shown to be involved in the regulation of gene expression during development, cell proliferation, apoptosis, glucose metabolism, stress resistance, and cancer.

Investigators at Case Western Reserve University (Cleveland, OH, USA) reported in a study published in the January 7, 2014, online edition of the journal Nature Communications that the microRNA miR-181a promoted TGF-beta-mediated epithelial-to-mesenchymal transition (a step critical to cancer spread) via repression of its functional target, the gene SMAD7.

TGF-beta acts as an antiproliferative factor in normal epithelial cells and at early stages of cancer development. When a cell is transformed into a cancer cell, parts of the TGF-beta signaling pathway are mutated, and TGF-beta no longer controls the cell. These cancer cells and surrounding stromal cells begin to proliferate. Both types of cell increase their production of TGF-beta. This TGF-beta acts on the surrounding stromal cells, immune cells, endothelial and smooth muscle cells. It causes immunosuppression and angiogenesis, which makes the cancer more invasive.

The SMAD7 gene product generally shuts down the TGF-beta signaling pathway. However, when miR-181a silences the expression of SMAD7, TGF-beta is not suppressed and metastasis is promoted.

"We found that this (miR-181a) was one of the top expressing microRNAs in tumors from patients who recurred within the first six months after treatment," said senior author Dr. Analisa DiFeo, assistant professor of general medical science-oncology at Case Western Reserve University. "We also found higher levels in recurrent tumors compared to primary tumors in the women we tested. By looking at the expression of this microRNA in tumor samples, we get an idea of which women may respond to standard chemotherapy and which are at a high risk for recurrence. This helps guide treatment decisions and improve survival rates."

"We are now looking for small molecules that can block the interaction between miR-181a and SMAD 7, stop TGF-beta activation and prevent this micro-RNA from spreading and disseminating ovarian cancer," said Dr. DiFeo.

Related Links:

Case Western Reserve University


New
Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Centrifuge
Centrifuge 5430/ 5430 R
New
Thyroxine ELISA
T4 ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.