We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Tissue-Penetrating Light Releases Chemotherapy inside Cancer Cells

By LabMedica International staff writers
Posted on 02 Mar 2014
Print article
Researchers have developed an advanced way of using light to convey chemotherapy safely to cancer cells. A light-activated drug delivery system is particularly promising, because it can accomplish spatial and temporal control of drug release.

Drs. Jeffrey Zink, professor of chemistry and biochemistry, and Fuyu Tamanoi, professor of microbiology, immunology, and molecular genetics, and colleagues, from the University of California, Los Angeles’ (UCLA) Jonsson Comprehensive Cancer Center (JCCC; Los Angeles, USA) published their findings February 20, 2014, in the journal Small.

Finding ways to deliver and release anticancer drugs in a controlled way that only targets the tumor can greatly decrease the amount of side effects from treatment, and greatly increase the cancer-killing efficacy of the drugs. The challenges of treating cancer frequently comes from the difficulty of getting anticancer chemotherapy drugs to tumor cells without damaging healthy tissue in the process. Many cancer patients experience treatment side effects that are the result of drug exposure to healthy tissues.

A major challenge in the development of light-activated drug delivery is to design a system that can respond to tissue-penetrating light. Drs. Tamanoi and Zink joined their diverse teams and collaborated with Dr. Jean-Olivier Durand at University of Montpellier, France to develop a new type of microscopic particles (nanoparticles) that can absorb energy from tissue-penetrating light that releases pharmaceutical agents in cancer cells.

These new nanoparticles are armed with specially designed nanovalves that can control release of anticancer drugs from thousands of pores, or tiny tubes, which hold molecules of chemotherapy drugs within them. The ends of the pores are blocked with capping molecules that hold the drug in similar to a cork in a bottle. The nanovalves contain special molecules that respond to the energy from two-photon light exposure, which opens the pores and releases the anticancer drugs. The performance of the nanoparticles was demonstrated in the laboratory using human breast cancer cells.

Because the effective depth range of the two-photon laser in the infrared red wavelength can reach 4 cm from the skin surface, this delivery system is best suited for tumors that can be reached within that range, which possibly include stomach breast, colon, and ovarian cancers.

Another facet of the nanoparticles is that they are fluorescent and therefore can be monitored in the body with molecular imaging techniques. This allows the researchers to track the progress of the nanoparticle into the cancer cell to safeguard that it is in its target before light activation. This ability to track a targeted therapy to its target has been called “theranostics” in the scientific nomenclature. “We have a wonderful collaboration,” said Dr. Zink. “When the JCCC brings together totally diverse fields, in this case a physical chemist and a cell signaling scientist, we can do things that neither one could do alone.”

“Our collaboration with scientists at Charles Gerhardt Institute was important to the success of this two-photon activated technique,” said Dr. Tamanoi. “It provides controls over drug delivery to allow local treatment that dramatically reduces side effects.”

Related Links:

University of California, Los Angeles’ Jonsson Comprehensive Cancer Center



Gold Member
Turnkey Packaging Solution
HLX
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Chemistry Analyzer
MS100
New
Silver Member
Oncology Molecular Diagnostic Test
BCR-ABL Dx ELITe MGB Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.