We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Transformed Intestinal Cells Produce Insulin in Novel Diabetes Treatment

By LabMedica International staff writers
Posted on 25 Mar 2014
Print article
Image: Insulin-expressing cells (red) arising within the intestinal crypts (green) of a mouse that received three beta-cell “reprogramming factors” (Photo courtesy of Dr. Ben Stanger, University of Pennsylvania).
Image: Insulin-expressing cells (red) arising within the intestinal crypts (green) of a mouse that received three beta-cell “reprogramming factors” (Photo courtesy of Dr. Ben Stanger, University of Pennsylvania).
A population of intestinal cells was found to be capable of morphing into insulin-producing beta-cells, which may pave the way a novel treatment for diabetes.

Type I diabetes mellitus, also known as insulin dependent diabetes, is believed to be caused by an autoimmune response where the body's own immune system attacks the beta cells and destroys them. The body can no longer produce and secrete insulin into the blood and fails to regulate the blood glucose concentration.

Investigators at the University of Pennsylvania (Philadelphia, USA) had shown previously that introduction of three beta-cell transcription factors—Pdx1 (P), MafA (M), and Ngn3 (N) [collectively called PMN] into the acinar cells of the pancreas could cause these cells to transform into insulin-producing beta-like cells.

In the current study, the investigators sought other readily available cell types that could be transformed into beta-like cells. To this end they performed an in vivo screen by expressing the three beta cell “reprogramming factors” in a wide spectrum of tissues.

They reported in the March 6, 2014, online edition of the journal Cell Reports that in a mouse model the transient expression of PMN in intestinal cells promoted the rapid conversion of intestinal crypt cells into endocrine cells, which coalesced into “neoislets” below the crypt base. Neoislet cells expressed insulin and showed ultrastructural features of beta cells. Importantly, intestinal neoislets were glucose-responsive and able to ameliorate hyperglycemia in diabetic mice. Furthermore, PMN expression in human intestinal “organoids” stimulated the conversion of intestinal epithelial cells into beta-like cells.

“Our results demonstrate that the intestine could be an accessible and abundant source of functional insulin-producing cells,” said senior author Dr. Ben Z. Stanger, assistant professor of medicine at the University of Pennsylvania. “Our ultimate goal is to obtain epithelial cells from diabetes patients who have had endoscopies, expand these cells, add PMN to them to make beta-like cells, and then give them back to the patient as an alternate therapy. There is a long way to go for this to be possible, including improving the functional properties of the cells, so that they more closely resemble beta cells, and figuring out alternate ways of converting intestinal cells to beta-like cells without gene therapy.”

“It is a powerful idea that if you have the right combination of transcription factors you can make any cell into any other cell. It is cellular alchemy,” said Dr. Stanger.

Related Links:

University of Pennsylvania


New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Tabletop Centrifuge
Mikro 185
New
Gold Member
Syphilis Screening Test
VDRL Antigen MR

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.