Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Encapsulated Human-Insulin-Producing Progenitor Cells Cure Diabetes in Mouse Model

By LabMedica International staff writers
Posted on 08 Apr 2014
A breakthrough system that allows subcutaneous implantation of encapsulated immature pancreatic cells (beta progenitor cells) was shown to produce enough insulin to correct the symptoms of diabetes in a mouse model.

Investigators at the Sanford-Burnham Medical Research Institute (La Jolla, CA, USA) and the University of California, San Diego (USA) placed CyT49 pancreatic islets derived from human embryonic stem cells (hESCs) into TheraCyte (Laguna Hills, CA, USA) encapsulation devices and transplanted the devices into a diabetic mouse model. More...


The TheraCyte system for encapsulating and transplanting cells is a thin membrane-bound polymeric chamber. It is fabricated from biocompatible membranes, which protect allogeneic cells from rejection by the recipient and, when implanted subcutaneously, induce the development of blood capillaries close to the membranes. This vascularization feature provides a rich blood supply to nourish the tissues within the membranes, aids in the communication of implanted cells with the host, and assures rapid uptake of therapeutic molecules. The TheraCyte system is protected by 20 US patents and multiple foreign patent filings in Europe and Japan.

The investigators monitored human insulin secretion and employed bioluminescent imaging to evaluate the maturation, growth, and containment of the encapsulated islet progenitors. They reported in the March 24, 2014, online edition of the journal Stem Cell Research that human insulin was detectable by seven weeks post-transplant and increased 17-fold over the course of eight weeks, yet during this period the biomass of encapsulated cells remained constant. Remarkably, by 20 weeks post-transplant encapsulated cells secreted sufficient levels of human insulin to ameliorate alloxan induced diabetes. Furthermore, bioluminescent imaging revealed that hESCs remained fully contained in the encapsulation device for up to 150 days, the longest period tested.

“Our study critically evaluates some of the potential pitfalls of using stem cells to treat insulin dependent-diabetes,” said senior author Dr. Pamela Itkin-Ansari, assistant professor of pediatrics at the University of California, San Diego and adjunct assistant professor at the Sanford-Burnham Medical Research Institute. “We have shown that encapsulated hESC-derived insulin-producing cells are able to produce insulin in response to elevated glucose without an increase in the mass or their escape from the capsule. These results are important because it means that the encapsulated cells are both fully functional and retrievable.”

“We were thrilled to see that the cells remained fully encapsulated for up to 150 days, the longest period tested,” said Dr. Itkin-Ansari. “Equally important is that we show that the progenitor cells develop glucose-responsiveness without a significant change in mass – meaning they do not outgrow their capsule, and, of course, we want to learn how long a capsule will function once implanted. Given these goals and continued successful results, I expect to see the technology become a treatment option for patients with insulin dependent-diabetes.”

Related Links:

Sanford-Burnham Medical Research Institute
University of California, San Diego
TheraCyte, Inc.



Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gel Cards
DG Gel Cards
Urine Chemistry Control
Dropper Urine Chemistry Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.