We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Project to Move Engineered Tissue and Organs from Lab to the Bedside, Operating Room

By LabMedica International staff writers
Posted on 13 May 2014
Print article
Image: Lab-grown vaginal organs implanted in patients (Photo courtesy of the Wake Forest Institute for Regenerative Medicine).
Image: Lab-grown vaginal organs implanted in patients (Photo courtesy of the Wake Forest Institute for Regenerative Medicine).
As developments in lab-created organs and tissues continue to advance, the challenge becomes how to translate the technology from the laboratory to the operating room. Two US universities are now exploring manufacturing platforms to mass produce customized engineered tissues and organs.

Developing a way to scale up personalized lab-created organs and tissues would benefit patients around the world who must wait for donated organs to receive transplants. North Carolina (NC) State University’s (Raleigh, NC, USA) industrial and systems engineering department (NC State ISE) engineers are partnering with biomedical scientists at the Wake Forest Institute for Regenerative Medicine (WFIRM; Winston-Salem, NC, USA). Together, the institutions are creating advancements in 3D technology, computer-aided modeling and intelligent automation to print tissues and organs for patients. With their focus on precision, computer modeling and three-dimensional (3D) printing will help scientists scale up the tissue engineering processes currently being done manually.

The future of organs-on-demand requires the mass generation of precise parts that are specific to each individual recipient. The development entails combining the cells and a scaffold, or a model that forms the essential shape. The support structure is designed to gradually dissolve after implantation in the body. At the same time, the scaffolding material is being absorbed by the body, and the cells lay down materials to form a permanent support structure, progressively replacing the engineered scaffold with a new organ.

Leading corporate and education specialists in medicine, engineering, and science gathered at this year’s Regenerative Medicine Foundation Conference, May 5-7, 2014, held in San Francisco, CA, USA, to share firsthand accounts of their visions and challenges of bio-tissue manufacturing. Dr. Binil Starly, director of NC State ISE’s laboratory for engineering biological tissue systems, uses bioprinting to devise ways for mass producing engineered tissue and also shared data about these latest developments, including a patent-pending process, which is collaboration between WFIRM and NCSU, for providing replacement skin for burn victims.

“It is one thing to be able to grow an organ but another to take that ability to the bedside, so involving manufacturing engineers early on in the biological research phase is vital to achieving commercialization,” said Dr. Starly. “NC State ISE reviews the scientific process for growing tissue cells, and then applies 3D technologies and algorithms to automate it, so a very sensitive biological process can be replicated safely and effectively.”

Dr. Anthony Atala, director of WFIRM and NC State ISE advisory board member, moderated a panel on the marketing of regenerative medicine therapies at the conference. WFIRM scientists have developed lab-grown organs, such as bladders, vaginal organs, and urine tubes successfully used in patients.

Related Links:

North Carolina State University
Wake Forest Institute for Regenerative Medicine 


Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
New
Human Insulin CLIA
Human Insulin CLIA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.