We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Loss of Ron Signaling Linked to Development of Inflammatory Bowel Disease

By LabMedica International staff writers
Posted on 14 May 2014
Print article
Image: Micrograph showing inflammation of the large bowel in a case of inflammatory bowel disease (Photo courtesy of Wikimedia Commons).
Image: Micrograph showing inflammation of the large bowel in a case of inflammatory bowel disease (Photo courtesy of Wikimedia Commons).
Cancer researchers have found that decreased molecular signaling by the Ron receptor tyrosine kinase (macrophage-stimulating protein receptor) is linked to the development of inflammatory bowel disease (IBD), a group of chronic inflammatory disorders of the intestine that result in painful and debilitating complications.

The Ron receptor tyrosine kinase, a member of the MET proto-oncogene family, is a pathogenic factor implicated in tumor malignancy. Specifically, aberrations in Ron signaling result in increased cancer cell growth, survival, invasion, angiogenesis, and drug resistance. Biochemical events such as ligand binding, receptor overexpression, generation of structure-defected variants, and point mutations in the kinase domain contribute to Ron signaling activation.

Investigators at the University of Cincinnati (Ohio, USA) have now found that decreased Ron signaling is linked to the development of IBD. This data was obtained from experiments conducted with a line of mice that had been genetically engineered to lack the tyrosine kinase signaling domain of Ron (TK-/- mice). These animals and wild-type controls were utilized as a well-characterized model of chronic colitis induced by cyclic exposure to dextran sulfate sodium.

Results reported in the April 17, 2014, online edition of the American Journal of Physiology-Gastrointestinal and Liver Physiology revealed that TK-/- mice were more susceptible to injury as judged by increased mortality compared to control mice and developed more severe colitis. In addition, loss of Ron led to significantly reduced body weights and more aggressive clinical histopathologies. Ron loss also resulted in a dramatic reduction in colonic epithelial cell proliferation and increased proinflammatory cytokine production, which was associated with alterations in important signaling pathways known to regulate IBD.

"Genome-wide linkage studies have identified the Ron receptor tyrosine kinase and its hepatocyte growth factor-like protein (HGFL) as genes highly associated with IBD,” said senior author Dr. Susan Waltz, professor in of cancer biology at the University of Cincinnati. "However, only scant information exists on the role of Ron or HGFL in IBD. Based on the linkage of Ron to IBD, we examined the biological role of Ron in colitis.”

"We found that genetic loss of Ron led to aggressive inflammation and damage to the colon of models with IBD,” said Dr. Waltz. "In addition, there are a number of small changes called single nucleotide polymorphisms (SNP) in humans which map to both the Ron and HGFL gene and have been identified to strongly associate IBD disease in humans. Our studies suggest that these SNPs may reduce the function of Ron and HGFL leading to chronic intestinal inflammation and damage. With the knowledge that we have gained in studying these proteins in cancer biology, we hope this information may be translated to help patients with Crohn’s disease and ulcerative colitis. Further studies on the Ron signaling pathway are needed and could reveal an important new target for these conditions."

Related Links:

University of Cincinnati


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Unit-Dose Packaging solution
HLX
New
Incubator
HettCube 120
New
Thyroid ELISA Kit
AESKULISA a-TPO

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: Genome sequencing technology has the potential to detect thousands of genetic disease (Photo courtesy of 123RF)

Gene Technology Outperforms Standard Newborn Screening Tests in Pioneering Study

Since its introduction in the 1960s, newborn screening has grown to encompass dozens of primarily genetic disorders. The standard approach to newborn screening involves detecting specific biomarkers in... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image: LMU’s Professor Frederick Klauschen developed the novel approach that can improve diagnostic accuracy (Photo courtesy of LMU Munich)

AI Tool Uses Imaging Data to Detect Less Frequent GI Diseases

Artificial intelligence (AI) is already being utilized in various medical fields, demonstrating significant potential in aiding doctors in diagnosing diseases through imaging data. However, training AI... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.