We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Novel Approach Simplifies Complex Sugars on Protein-Based Biotech Medicines

By LabMedica International staff writers
Posted on 25 May 2014
Print article
A team of biotech medicine developers has established a cell-based production method that reduces the complexity of the sugars (glycans) expressed on protein-based drugs.

Heterogeneity in the N-glycans on therapeutic proteins causes difficulties for protein purification and process reproducibility and can lead to variable therapeutic efficacy. This heterogeneity arises from the multistep process of mammalian complex-type N-glycan synthesis.

Investigators at, Ghent University (Belgium) recently described a novel glycoengineering strategy that they called GlycoDelete, which used a fungal enzyme to shorten the Golgi N-glycosylation pathway in mammalian cells.

They wrote in the April 20, 2014, online edition of the journal Nature Biotechnology that this shortening resulted in the expression of proteins with small, sialylated trisaccharide N-glycans and reduced complexity compared to native mammalian cell glycoproteins. GlycoDelete engineering did not interfere with the functioning of N-glycans in protein folding, and the physiology of cells modified by GlycoDelete was similar to that of wild-type cells. This strategy for reducing N-glycan heterogeneity on mammalian proteins could lead to more consistent performance of therapeutic proteins and modulation of biopharmaceutical functions.

Senior author Dr. Nico Callewaert, professor of medical biotechnology at Ghent University, said, “This technology has allowed us to solve an old biotech problem. Since the 1990s, nearly everyone has been working to make the sugar synthesis in biotech production cells as similar to human cells as possible. This is a very difficult task, because there are so many steps in this synthesis pathway. We have been able to create a detour in this synthesis pathway in a fairly simple manner, making the pathway much shorter and simpler.”

Related Links:

Ghent University


Gold Member
Turnkey Packaging Solution
HLX
Unit-Dose Packaging solution
HLX
New
Human Immunodeficiency Virus Assay
RealLine HIV Quantitative Kit
New
ELISA System
ABSOL HS DUO

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: Genome sequencing technology has the potential to detect thousands of genetic disease (Photo courtesy of 123RF)

Gene Technology Outperforms Standard Newborn Screening Tests in Pioneering Study

Since its introduction in the 1960s, newborn screening has grown to encompass dozens of primarily genetic disorders. The standard approach to newborn screening involves detecting specific biomarkers in... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image: LMU’s Professor Frederick Klauschen developed the novel approach that can improve diagnostic accuracy (Photo courtesy of LMU Munich)

AI Tool Uses Imaging Data to Detect Less Frequent GI Diseases

Artificial intelligence (AI) is already being utilized in various medical fields, demonstrating significant potential in aiding doctors in diagnosing diseases through imaging data. However, training AI... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.