We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Loss of Tumor Suppressor Gene Promotes Breast Cancer Metastasis into the Lungs

By LabMedica International staff writers
Posted on 08 Jun 2014
Print article
Image: Graphic explaining the consequences of the loss of function of RARRES3 for breast cancer lung metastasis (Photo courtesy of the Institute for Research in Biomedicine).
Image: Graphic explaining the consequences of the loss of function of RARRES3 for breast cancer lung metastasis (Photo courtesy of the Institute for Research in Biomedicine).
Cancer researchers have found that loss of a specific tumor suppressor gene promotes the metastasis of breast cancer cells into the lungs.

Investigators at the Institute for Research in Biomedicine (Barcelona, Spain) characterized the biological activity of RARRES3 (retinoic acid receptor responder protein 3), a recently identified metastasis suppressor gene whose reduced expression in primary breast tumors identifies a subgroup of patients more likely to develop lung metastasis. This work was carried out on samples from mice and in cell lines, and then was validated in 580 samples from human primary breast cancer tumors.

Results published in the May 27, 2014, online edition of the journal EMBO Molecular Medicine revealed that the loss of function of the RARRES3 gene in primary breast tumor cells promoted metastasis to the lung. RARRES3 downregulation engaged metastasis-initiating capabilities by facilitating adhesion of the tumor cells to the lung parenchyma. In addition, impaired tumor cell differentiation due to the loss of RARRES3 phospholipase A1/A2 activity also contributed to lung metastasis.

Looking at the results from the other direction, it was clear that the investigators had shown that RARRES3 blocked adhesion to the lung parenchyma and, second, the phospholipase activity of RARRES3 stimulated differentiation attributes, thus blunting metastasis-initiating functions at the lung required for the breast cancer cells to establish a lesion.

"RARRES3 is suppressed in estrogen receptor-negative (ER-) breast cancer tumors, thus stimulating the later invasion of the cancer cells and conferring them a greater malignant capacity," said senior author Dr. Roger Gomis, head of the growth control and cancer metastasis laboratory at the Institute for Research in Biomedicine. "The transformation of a normal cell into an invasive tumor cell is not just about acquiring capacities but equally important is the loss of certain genes, such as RARRES3."

Related Links:

Institute for Research in Biomedicine


Gold Member
Turnkey Packaging Solution
HLX
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
17 Beta-Estradiol Assay
17 Beta-Estradiol Assay
New
Thyroxine ELISA
T4 ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.