We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Synthetic Peptide Non-Covalently Transports Cancer Drugs Across the Blood-Brain Barrier

By LabMedica International staff writers
Posted on 18 Jun 2014
Print article
Cancer researchers have used a novel synthetic peptide to transport chemotherapeutic compounds and other small molecules across the blood-brain barrier and into the brains of mice.

The transport peptide, K16ApoE, comprised sixteen lysine residues and 20 amino acids corresponding to the LDLR (low density lipoprotein receptor)-binding domain of apolipoprotein E (ApoE). Investigators at the Mayo Clinic (Rochester, MN, USA) had demonstrated previously that by mimicking a ligand-receptor system, K16ApoE could deliver three different proteins (beta-galactosidase, IgG, and IgM) in a non-covalent fashion across the blood-brain barrier. To their knowledge this was the first report demonstrating successful delivery of various proteins across the blood-brain barrier that did not involve chemically linking the proteins with a carrier entity.

In the current study, the investigators delivered chemotherapeutics and other agents into the brains of mice either by injecting the carrier peptide and the drugs separately or as a mixture via the femoral vein. A modification of the method comprised injection of K16ApoE pre-mixed with cetuximab, followed by injection of a small-molecule drug.

The investigators reported in the May 21, 2014, online edition of the journal PLOS ONE that seven-of-seven different small molecules were successfully delivered to the brain via K16ApoE. Depending on the injection method, brain uptake was 34–50-fold greater for cisplatin and 54–92-fold greater for methotrexate with K16ApoE than without. Visually intense brain-uptake of the dyes Evans Blue, Light Green SF, and Crocein scarlet was also achieved. Direct intracranial injection of Evans Blue showed locally restricted distribution of the dye in the brain, whereas K16ApoE-mediated intravenous injection resulted in the distribution of the dye throughout the brain.

"We know that some chemotherapeutic agents can kill brain tumor cells when they are outside the brain (as in a laboratory test). But because the agents cannot cross the blood-brain barrier, they are not able to kill brain tumor cells inside the brain. With the peptide carrier, these agents can now get into the brain and potentially kill the tumor cells," said senior author Dr. Robert Jenkins a neurology researcher at the Mayo Clinic.

Related Links:

Mayo Clinic


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Anti-Secukinumab ELISA
LISA-TRACKER anti-Secukinumab
New
Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.