We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




A MicroRNA Regulates the Mechanism That Prevents Osteoporosis and Bone Metastasis

By LabMedica International staff writers
Posted on 07 Jul 2014
Print article
Image: Osteoclast, with bone below it, shows typical distinguishing characteristics: a large cell with multiple nuclei and a “foamy” cytosol (Photo courtesy of Wikimedia Commons).
Image: Osteoclast, with bone below it, shows typical distinguishing characteristics: a large cell with multiple nuclei and a “foamy” cytosol (Photo courtesy of Wikimedia Commons).
A study conducted on a mouse model of osteoporosis found that animals with higher than normal levels of the microRNA (miRNA) miR-34a were protected from the syndrome by having increased bone mass and reduced bone breakdown.

MiRNAs are fragments of RNA about 20 nucleotides long that block gene expression by attaching to molecules of messenger RNA (mRNA) in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA.

Investigators at the University of Texas Southwestern Medical Center (Dallas, USA) have been studying how microRNAs were involved in regulating skeletal biology. To this end, they used mouse models that either underexpressed or overexpressed miR-34a.

They reported in the June 25, 2014, online edition of the journal Nature that miR-34a-overexpressing transgenic mice exhibited lower bone resorption and higher bone mass. Conversely, miR-34a knockout and heterozygous mice exhibited elevated bone resorption and reduced bone mass. At the cellular level it was found that miR-34a or molecules that mimicked the function of miR-34a blocked the development of osteoclasts (cells that cause destruction of bone), which make the bone less dense and prone to fracture. High levels of bone destruction and reduced bone density caused by excessive numbers of osteoclasts are characteristic of osteoporosis.

The investigators pointed out that the mechanisms involved in development of osteoporosis were similar to those that allow certain cancers to metastasize into bone tissue.

“This new finding may lead to the development of miR-34a mimics as a new and better treatment for osteoporosis and cancers that metastasize to the bone,” said senior author Dr. Yihong Wan, assistant professor of pharmacology at the University of Texas Southwestern Medical Center. “Interestingly, the mouse miR-34a is identical to that in humans, which means that our findings may apply to humans as well.”

Related Links:

University of Texas Southwestern Medical Center


Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Alpha-1-Antitrypsin ELISA
IDK alpha-1-Antitrypsin ELISA
New
Silver Member
Benchtop Image Acquisition Device
Microwell Imager

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.