We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Nanoparticles Designed to Deliver Drugs to Targeted Cells

By LabMedica International staff writers
Posted on 16 Jul 2014
Print article
Image: The nanoparticles, which are capable of delivering and exchanging complementary molecules, emit a fluorescent signal that can be observed with a microscope (Photo courtesy of the University of Miami).
Image: The nanoparticles, which are capable of delivering and exchanging complementary molecules, emit a fluorescent signal that can be observed with a microscope (Photo courtesy of the University of Miami).
Investigators are exploring the use and behavior of nanoparticles to deliver molecules to target cells.

There is a great demand for the development of nanoparticles that can transport and deliver drugs to target cells in the human body. Researchers from the University of Miami (UM; Coral Gables, USA) have created nanoparticles that, under favorable settings, can self-assemble, ensnaring complementary guest molecules within their structure. These adaptable nanocarriers can travel in the aqueous environment encircling cells and transport their passenger molecules through the membrane of living cells to sequentially deliver their payload.

Although the transport of molecules inside cells with nanoparticles has been earlier achieved using various methods, researchers have developed nanoparticles capable of delivering and exchanging complementary molecules. For practical applications, these nanocarriers are highly desirable, reported Francisco Raymo, professor of chemistry in the University of Miami College of Arts and Sciences and lead investigator of the project. “The ability to deliver distinct species inside cells independently and force them to interact, exclusively in the intracellular environment, can evolve into a valuable strategy to activate drugs inside cells,” said Prof. Raymo.

The new nanocarriers are 15 nm in diameter. They are supramolecular constructs comprised of amphiphilic polymers. These nanocarriers hold the guest molecules within the boundaries of their water-insoluble core and use their water-soluble exterior to move through an aqueous environment. As a result, these nanovehicles are is suitable for transferring molecules, which would otherwise be insoluble in water, across a liquid environment.

“Once inside a living cell, the particles mix and exchange their cargo. This interaction enables the energy transfer between the internalized molecules,” said Prof. Raymo, director of UM’s laboratory for molecular photonics. “If the complementary energy donors and acceptors are loaded separately and sequentially, the transfer of energy between them occurs exclusively within the intracellular space. As the energy transfer takes place, the acceptors emit a fluorescent signal that can be observed with a microscope.”

Crucial for this process are the noncovalent bonds that loosely hold the supramolecular constructs together. These weak bonds exist between molecules with complementary shapes and electronic characteristics. They are responsible for the ability of supramolecules to assemble spontaneously in liquid environments. Under the right conditions, the reversibility of these weak noncovalent contacts allows the supramolecular constructs to exchange their components as well as their cargo.

The research was conducted with cell cultures. It is not yet known if the nanoparticles can actually travel through the bloodstream. “That would be the dream, but we have no evidence that they can actually do so,” said Prof. Raymo. “However, this is the direction we are heading.”

The next step of this study involves demonstrating that this method can be used to do chemical reactions inside cells, instead of energy transfers. “The size of these nanoparticles, their dynamic character, and the fact that the reactions take place under normal biological conditions [at ambient temperature and neutral environment] makes these nanoparticles an ideal vehicle for the controlled activation of therapeutics directly inside the cells,” Prof. Raymo concluded.

The study’s findings were published in the Journal of the American Chemical Society.

Related Links:

University of Miami


Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
UHF RFID Tag and Inlay
AD-321r6/AD-321r6-P
New
LH ELISA
Luteinizing Hormone ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: Schematic overview of maternal biomarker discovery using cell-free RNA during pregnancy (Photo courtesy of Circulation Research (2024). DOI: 10.1161/CIRCRESAHA.124.325024)

Maternal Blood Test Identifies Congenital Heart Diseases in Fetus

Each year, around 1,000 children are born with a single ventricle heart defect (SVHD), a condition where one of the heart's lower chambers is underdeveloped, too small, or missing a valve.... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image

AI-Based Method Shows Promise for Pathological Diagnosis of Hereditary Kidney Diseases

Alport syndrome is a hereditary kidney disorder characterized by kidney dysfunction, sensorineural hearing loss, and ocular abnormalities. Early in the disease, patients experience hematuria, which is... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.