Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

By LabMedica International staff writers
Posted on 30 Jul 2014
Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.

Investigators at Cedars-Sinai Heart Institute (Los Angeles, CA, US) examined whether adenoviral-TBX18 gene transfer could create biological pacemaker activity in vivo in a large-animal model of complete heart block. More...
The Tbx18 gene is required for development of pacemaker cells in the heart during fetal development but is normally not functional after birth.

Tbx18 gene therapy is aimed at treating a group of arrhythmias known as sick sinus syndrome. In a healthy heart, sinoatrial (SA) nodal cells act as the heart’s pacemaker and cause the heart to beat in a regular rhythm. While SA nodal cells comprise only about 10 thousand of the 10 billion cells in the heart, they play a crucial role in the heart’s function. In sick sinus syndrome the SA node does not function properly and causes irregular heartbeat. Currently the treatment for sick sinus syndrome is to remove the SA nodal cells that are not functioning properly and to implant an electronic pacemaker to maintain a regular rhythm. However, currently used electronic pacemakers have drawbacks such as equipment malfunction, limited battery life, lack of nervous system regulation, and risks associated with implantation of the device in one’s chest.

The investigators reported in the July 16, 2014, online edition of the journal Science Translational Medicine that functional SA nodal cells, which could be identified by their distinctive morphology, were found at the site of adenovirus-TBX18 injection shortly after intramyocardial injection of the material. Biological pacemaker activity was evident in the TBX18-transduced animals starting at day two and persisted for the duration of the study (14 days) with minimal backup electronic pacemaker use. No local or systemic safety concerns arose during the course of the study.

“We have been able, for the first time, to create a biological pacemaker using minimally invasive methods and to show that the biological pacemaker supports the demands of daily life,” said senior author Dr. Eduardo Marbán, director of the Cedars-Sinai Heart Institute. “We also are the first to reprogram a heart cell in a living animal in order to effectively cure a disease. Originally, we thought that biological pacemaker cells could be a temporary bridge therapy for patients who had an infection in the implanted pacemaker area. These results show us that with more research, we might be able to develop a long-lasting biological treatment for patients.”

The investigators hope that continued success with animal studies will lead to human clinical trials in about three years.

Related Links:
Cedars-Sinai Heart Institute



Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.