We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Two-Dimensional Infrared Spectroscopy Offers Clues into Amyloid Disease Mechanisms

By LabMedica International staff writers
Posted on 04 Aug 2014
Print article
Image: Schematic of the intermediate structure in the aggregation pathway of amylin (Photo courtesy of Zhang, Buchanan, Zanni, Biomedical Spectroscopy and Imaging).
Image: Schematic of the intermediate structure in the aggregation pathway of amylin (Photo courtesy of Zhang, Buchanan, Zanni, Biomedical Spectroscopy and Imaging).
Amyloid diseases, such as type 2 diabetes, cataracts, Alzheimer’s disease, and the spongiform encephalopathies, all share the common characteristic that proteins aggregate into long fibers that then form plaques. However, recent in vitro research has demonstrated that neither the amylin monomer precursors nor the plaques themselves are very toxic. New data revealed by using two-dimensional infrared (2D IR) spectroscopy shows an intermediate structure during the amylin aggregation pathway that may clarify toxicity, offering new strategies for interventions.

The findings were published in the online July 1, 2014, in the journal Biomedical Spectroscopy and Imaging. “Figuring out how and why amyloid plaques form is exceedingly difficult, because one needs to follow the atomic shapes of the protein molecules as they assemble. Most tools in biology give either shapes or motions, but not both. We have been developing a new spectroscopic tool, called two-dimensional infrared spectroscopy, which can monitor the plaques as they form in a test tube,” said lead investigator Martin T. Zanni, PhD, from the department of chemistry at the University of Wisconsin-Madison (USA).

The researchers utilized this new technology to study the amyloid protein associated with type 2 diabetes. Isotope labeling was used to measure the secondary structure content of individual residues. By following many 2D IR spectra from one particular region (known as the FGAIL region) over several hours, they were able to visualize the amylin as it progressed from monomers to fibers.

“We learned that, prior to making the plaques, the proteins first assemble into an unexpected and intriguing intermediate and organized structure,” commented Dr. Zanni. The proteins undergo a transition from disordered coil (in the monomer), to ordered β-sheet (in the oligomer) to disordered structure again (in the fiber).

These findings help to elucidate the physics of the aggregation process, the chemistry of amyloid inhibitors, and the biology of type 2 diabetes, as well as elucidate earlier contradictory data.

The scientists suggest that differences between species in their capacity to develop type 2 diabetes may be related to the capacity to form these intermediate amylin structures. That may be why humans develop the disease while dogs and rats do not. “I am not encouraging us to begin engineering our DNA to match that of rats, but our findings may help to develop plaque inhibitors or hormone replacement therapies for people suffering from type 2 diabetes, because we know the structure we want to avoid,” said Dr. Zanni. He added that mutations in the FGAIL region may inhibit fiber formation by interfering with the formation of these intermediates.

Related Links:

University of Wisconsin-Madison


Gold Member
Turnkey Packaging Solution
HLX
Unit-Dose Packaging solution
HLX
New
Urine Bone Markers Control
Lyphochek Urine Bone Markers Control
New
Quantitative Immunoassay Analyzer
AS050

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: Schematic overview of maternal biomarker discovery using cell-free RNA during pregnancy (Photo courtesy of Circulation Research (2024). DOI: 10.1161/CIRCRESAHA.124.325024)

Maternal Blood Test Identifies Congenital Heart Diseases in Fetus

Each year, around 1,000 children are born with a single ventricle heart defect (SVHD), a condition where one of the heart's lower chambers is underdeveloped, too small, or missing a valve.... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image

AI-Based Method Shows Promise for Pathological Diagnosis of Hereditary Kidney Diseases

Alport syndrome is a hereditary kidney disorder characterized by kidney dysfunction, sensorineural hearing loss, and ocular abnormalities. Early in the disease, patients experience hematuria, which is... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.