We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Stem Cell Advance May Enhance the Process of Tissue Regeneration

By LabMedica International staff writers
Posted on 12 Aug 2014
Print article
Image: Induced pluripotent stem cells—known as iPS cells, and which act very much like embryonic stem cells—are here growing into heart cells (blue) and nerve cells (green) (Photo courtesy of the Gladstone Institutes/Chris Goodfellow).
Image: Induced pluripotent stem cells—known as iPS cells, and which act very much like embryonic stem cells—are here growing into heart cells (blue) and nerve cells (green) (Photo courtesy of the Gladstone Institutes/Chris Goodfellow).
A new stem-cell discovery might one day lead to a more streamlined way to obtain stem cells, which then could be used in the development of replacement tissue for declining body parts.

The research builds on a strategy exploited by scientists from the University of California, San Francisco (UCSF; USA) that involves reprogramming adult cells back to an embryonic state in which they again have the potential to become any type of cell. They reported their findings July 17, 2014, issue of the journal Cell.

The efficiency of this process may soon increase due to the scientists’ identification of biochemical pathways that can suppress the necessary reprogramming of gene activity in adult human cells. Taking away these hurdles was shown to increase the efficiency of stem-cell production.

“Our new work has important implications for both regenerative medicine and cancer research,” said Miguel Ramalho-Santos, PhD, an associate professor of obstetrics, gynecology and reproductive sciences and a member of the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF, who led the research, funded in part by a NIH Director’s New Innovator Award.

The earlier discovery that it was possible to take specialized adult cells and reverse the developmental clock to strip the mature cells of their distinguishing identities and characteristics, and to make them immortal, reprogrammable cells that theoretically can be used to substitute for any tissue type, led to a share of the Nobel Prize in Physiology or Medicine being awarded to UCSF, Gladstone Institutes and Kyoto University (Japan) researcher Shinya Yamanaka, MD, in 2012.

These induced pluripotent stem (iPS) cells are regarded as an alternative research strategy to ongoing efforts to develop tissue from stem cells obtained from early-stage human embryos. However, in spite of the potential of iPS cells and the enthusiasm surrounding iPS research, the percentage of adult cells effectively transformed to iPS cells is typically low, and the resulting cells often retain indications of their earlier lives as specialized cells.

Researchers generate stem cells by forcing the activation within adult cells of pluripotency-inducing genes, beginning with the so-called “Yamanaka factors,” a process that turns back the clock on cellular maturation. However, as Dr. Ramalho-Santos noted, “from the time of the discovery of iPS cells, it was appreciated that the specialized cells from which they are derived are not a blank slate. They express their own genes that may resist or counter reprogramming.”

But as to what precisely was getting in the way of reprogramming remained little understood. “Now, by genetically removing multiple barriers to reprogramming, we have found that the efficiency of generation of iPS cells can be greatly increased,” Dr. Ramalho-Santos said. The discovery, he reported, will contribute to accelerating the safe and effective use of iPS cells and other reprogrammed cells.

The researchers found not only isolated genes acting as barriers, but rather sets of genes acting together through different mechanisms to create roadblocks to reprogramming. “At practically every level of a cell’s functions there are genes that act in an intricately coordinated fashion to antagonize reprogramming,” Dr. Ramalho-Santos said.

These processes are likely to help adult cells maintain their characteristics and functional roles. “Much like the Red Queen running constantly to remain in the same place in Lewis Carroll’s ‘Through the Looking-Glass,’ adult cells appear to put a lot of effort into remaining in the same state,” he said.

To uncover this earlier unidentified busy biochemical environment of inhibitory gene activity, the scientists had to simultaneously master a few different technical coups in the lab. They combined advanced cellular, genetic, and bioinformatics technologies to comprehensively identify genes that act as barriers to the generation of human iPS cells, and examined how these distinctive barriers work.

Apart from maintaining the stability of adult tissues, the barrier genes most likely serve important roles in other diseases—including in the prevention of various cancers, according to Dr. Ramalho-Santos.


Related Links:
University of California, San Francisco

Gold Member
Turnkey Packaging Solution
HLX
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
New
Rocking Shaker
HumaRock

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.