We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Factors in the Tumor Microenvironment Promote Cancer Growth and Metastasis

By LabMedica International staff writers
Posted on 13 Aug 2014
Print article
Cancer researchers have found that procancerous HSF1 (Heat shock factor 1) drives a transcriptional program in cancer-associated fibroblasts (CAFs) that complements, yet is completely different from, the program it drives in adjacent cancer cells.

Stromal cells within the tumor microenvironment are essential for tumor progression and metastasis, but little is known about the factors that drive the transcriptional reprogramming of stromal cells within tumors. Investigators at the Whitehead Institute for Biomedical Research (Cambridge, MA, USA) recently reported that the transcriptional regulator heat shock factor 1 (HSF1) was frequently activated in cancer-associated fibroblasts (CAFs), where it was a potent enabler of malignancy. HSF1 activity was found in a variety of human tumors, including breast, lung, skin, esophageal, colon, and prostate cancers.

HSF1 is the major regulator of heat shock protein transcription in eukaryotes. In the absence of cellular stress, HSF1 is inhibited by association with the heat shock proteins Hsp40/Hsp70 and Hsp90 and is therefore not active. Cellular stresses, such as increased temperature, can cause misfolding of proteins in the cell. Heat shock proteins bind to the misfolded proteins and dissociate from HSF1. This allows HSF1 to form trimers and translocate to the cell nucleus where it is hyperphosphorylated, binds to DNA containing heat shock elements, and activates transcription.

The investigators reported in the July 31, 2014, issue of the journal Cell that analysis of tumor samples from breast cancer and non-small-cell lung cancer patients revealed that HSF1 activation in the stroma was associated with poor patient outcomes, including reduced disease-free survival and overall survival. Thus, stromal HSF1 is considered to be a possible biomarker for cancer diagnosis and prognosis as well as a potential drug target.

“This is actually a beautiful example of evolution,” said Dr. Ruth Scherz-Shouval, a postdoctoral researcher at the Whitehead Institute for Biomedical Research. “It is recognizing that the tumor is like an organism that adheres to evolutionary principles. HSF1 has been highly conserved over time, supporting the survival of organisms ranging from yeast to human, so it makes sense that it is coopted here. Both cancer cells and the microenvironment are sensing changes in the tumor and responding, signaling to one another to help the “organism,” albeit to the detriment of the host. These are different programs, but they are both controlled by HSF1 and serve the same purpose.”

“It is important to find HSF1 operating this way in the stroma,” said Dr. Scherz-Shouval. “The tumor microenvironment tends to be more genetically stable and less prone to mutation, suggesting that even if cancer cells could mutate to evade therapeutic disruption of HSF1, supportive cells in the stroma could still be susceptible.”

Related Links:

Whitehead Institute for Biomedical Research


Gold Member
Turnkey Packaging Solution
HLX
Unit-Dose Packaging solution
HLX
New
LH ELISA
Luteinizing Hormone ELISA
New
Progesterone Serum Assay
Progesterone ELISA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: Schematic overview of maternal biomarker discovery using cell-free RNA during pregnancy (Photo courtesy of Circulation Research (2024). DOI: 10.1161/CIRCRESAHA.124.325024)

Maternal Blood Test Identifies Congenital Heart Diseases in Fetus

Each year, around 1,000 children are born with a single ventricle heart defect (SVHD), a condition where one of the heart's lower chambers is underdeveloped, too small, or missing a valve.... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image

AI-Based Method Shows Promise for Pathological Diagnosis of Hereditary Kidney Diseases

Alport syndrome is a hereditary kidney disorder characterized by kidney dysfunction, sensorineural hearing loss, and ocular abnormalities. Early in the disease, patients experience hematuria, which is... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.