We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Shape Memory Polymer Designed to Help Reconstruct Faces

By LabMedica International staff writers
Posted on 27 Aug 2014
Print article
Image: A material that changes shape when heated could be used to make custom implants. The white bar is 1-cm-long (Photo courtesy of Melissa Grunlan, Texas A&M).
Image: A material that changes shape when heated could be used to make custom implants. The white bar is 1-cm-long (Photo courtesy of Melissa Grunlan, Texas A&M).
Researchers have developed a “self-fitting” material that expands with warm salt water to effectively fill bone defects, and also acts as a scaffold for new bone growth.

Birth defects, such as cleft palates, injuries, or surgery to remove a tumor can create gaps in bone that are too large to heal naturally. Furthermore, when they occur in the head, face, or jaw, these bone defects can dramatically alter an individual’s appearance.

The researchers described their approach at the 248th National Meeting & Exposition of the American Chemical Society (ACS), the world’s largest scientific society, on August 13, 2014, held in San Francisco (CA, USA). Currently, the most common way to fill bone defects in the face, head, or jaw (the cranio-maxillofacial area) is autografting: a process in which surgeons harvest bone from somewhere else in the body, such as the hip bone, and then try to shape it to fit the bone defect. “The problem is that the autograft is a rigid material that is very difficult to shape into these irregular defects,” said Melissa Grunlan, PhD, leader of the study.

Moreover, harvesting bone for the autograft can itself create complications at the place where the bone was taken. Another strategy is to use bone putty or cement to fill gaps. However, these materials are not ideal. They become very brittle when they harden, and they do not have pores, or small holes, that permit new bone cells to move in and reconstruct the damaged tissue.

To develop a better material, Dr. Grunlan and her colleagues from Texas A&M University (College Station, USA) constructed a shape-memory polymer (SMP) that molds itself precisely to the shape of the bone defect without being brittle. It also supports the growth of new bone tissue.

SMPs are materials whose geometry changes in response to heat. The investigators made a porous SMP foam by linking together molecules of poly(ε-caprolactone), an elastic, biodegradable substance that is already used in some medical implants. The resulting material resembled a stiff sponge, with many interconnected pores to allow bone cells to migrate in and grow. Upon heating to 60 °C, the SMP becomes very soft and pliable. Therefore, during surgery to repair a bone defect, a surgeon could warm the SMP to that temperature and fill in the defect with the softened substance. Then, as the SMP is cooled to body temperature, it would resume its former stiff texture and “lock” into place.

The researchers also coated the SMPs with polydopamine, a sticky substance that helps lock the polymer into position by inducing formation of a mineral that is found in bone. It may also help osteoblasts, the cells that generate bone, to stick and spread throughout the polymer. The SMP is biodegradable, so that eventually the scaffold will disappear, leaving only new bone tissue behind.

To evaluate whether the SMP scaffold could support bone cell growth, the researchers seeded the polymer with human osteoblasts. After three days, the polydopamine-coated SMPs had grown about five times more osteoblasts than those without a coating. Furthermore, the osteoblasts produced more of the two proteins, runX2 and osteopontin, which are critical for new bone formation.

Dr. Grunlan reported that the next phase of the research will be to evaluate the SMP’s ability to heal cranio-maxillofacial bone defects in animals. “The work we’ve done in vitro is very encouraging,” she says. “Now we’d like to move this into preclinical, and hopefully, clinical studies.”

Related Links:
Texas A&M University

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Urine Drug Test
Instant-view Methadone Urine Drug Test
New
Urine Collection Container
Urine Monovette

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: Schematic overview of maternal biomarker discovery using cell-free RNA during pregnancy (Photo courtesy of Circulation Research (2024). DOI: 10.1161/CIRCRESAHA.124.325024)

Maternal Blood Test Identifies Congenital Heart Diseases in Fetus

Each year, around 1,000 children are born with a single ventricle heart defect (SVHD), a condition where one of the heart's lower chambers is underdeveloped, too small, or missing a valve.... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image

AI-Based Method Shows Promise for Pathological Diagnosis of Hereditary Kidney Diseases

Alport syndrome is a hereditary kidney disorder characterized by kidney dysfunction, sensorineural hearing loss, and ocular abnormalities. Early in the disease, patients experience hematuria, which is... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.