We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Leukemia Cells Are Killed in Culture by Immune Cells Grown from the Same Patient

By LabMedica International staff writers
Posted on 01 Sep 2014
Print article
Image: A leukemia cell coated with antibody is marked for destruction by activated natural killer cells (Photo courtesy of the University of Southern California).
Image: A leukemia cell coated with antibody is marked for destruction by activated natural killer cells (Photo courtesy of the University of Southern California).
Immune system natural killer (NK) cells were isolated from leukemia patients, expanded in culture, and then shown in an in vitro system to attack and destroy cancer cells from the original cell donors.

Acute lymphoblastic leukemia (ALL) is characterized by an excessive amount of white blood cell precursors (B-cell lymphoblasts) in the blood and bone marrow. B-cell lineage ALL (pre-B ALL) accounts for 80 to 85% of childhood ALL.

Investigators at the University of Southern California (Los Angeles, USA) used flow cytometry to determine that ALL patient samples at diagnosis, post-induction, and relapse contained detectable numbers of CD56+ cells. They were able to selectively expand these CD56+ immune effector (NK) cells from bone marrow and peripheral blood samples at diagnosis and at various stages of treatment by co-culture with artificial antigen-presenting K562 clone 9.mbIL-21 cells. They combined these expanded immune effector cells with a monoclonal antibody targeted to a specific receptor (BAFF-R) on the leukemia cells.

BAFF-R is encoded in humans by the TNFRSF13C (tumor necrosis factor receptor superfamily member 13C) gene. BAFF enhances B-cell survival in vitro and is a regulator of the peripheral B-cell population. Overexpression of BAFF in mice results in mature B-cell hyperplasia and symptoms of systemic lupus erythematosus (SLE). Also, some SLE patients have increased levels of BAFF in their serum. Therefore, it has been proposed that abnormally high levels of BAFF may contribute to the pathogenesis of autoimmune diseases by enhancing the survival of autoreactive B cells. The protein encoded by the TNFRSF13C gene is a receptor for BAFF and is a type III transmembrane protein containing a single extracellular cysteine-rich domain.

It is thought that BAFF-R is the principal receptor required for BAFF-mediated mature B-cell survival. Since BAFF-R is expressed on precursor pre-B ALL cells but not on their pre-B normal counterparts, selective killing of ALL cells is possible by targeting this receptor.

Results revealed that matched CD56+ effector cells killed autologous ALL cells grown out from leukemia samples of the same patient, through both spontaneous as well as antibody-dependent cellular cytotoxicity. Since autologous cell therapy avoids the potential development of graft-versus-host disease, these results indicate that expanded CD56+ cells could be applied for treatment of pre-B-ALL without transplantation, or for purging of bone marrow in the setting of autologous bone marrow transplants.

“In this study, we used NK cells and ALL cells from the same pediatric patients. We found that autologous natural killer cells will destroy the patient’s leukemia cells,” said senior author Dr. Nora Heisterkamp, professor of research, pediatrics, and pathology at the University of Southern California.

Related Links:

University of Southern California


New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
Automated Blood Typing System
IH-500 NEXT
New
Toxoplasma Gondii Test
Toxo IgG ELISA Kit
New
Hepatitis B Virus Test
HBs Ab – ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.