We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Laser Scattering Technique Detects Single Molecules

By LabMedica International staff writers
Posted on 21 Sep 2014
Print article
Image: Investigators identified individual unlabeled proteins by the weak shadow that the biomolecules produce when they scatter laser light (Photo courtesy of the Max Planck Institute for the Science of Light).
Image: Investigators identified individual unlabeled proteins by the weak shadow that the biomolecules produce when they scatter laser light (Photo courtesy of the Max Planck Institute for the Science of Light).
A recent paper described a novel technique for the label-free detection of single biomolecules such as tumor markers, proteins, or RNA fragments.

Investigators at the Max Planck Institute for the Science of Light (Erlangen, Germany) adapted a method called interferometric detection of scattering (iSCAT) to achieve the goal of label-free single molecule detection.

In this approach, which was described fully in the July 29, 2014, online edition of the journal Nature Communications, the investigators directed laser light onto a microscope slide on which proteins of interest had been captured with appropriate biochemical lures. The bound proteins scattered the laser light, thus casting a shadow. By comparing shadow diagrams before and after binding of the proteins of interest, the investigators could identify target proteins, which stood out clearly from the background as dark spots, even though the shadow of the protein was only one ten-thousandth or even one hundred-thousandth as dark as the background.

“In our method the scattering image of a protein is amplified and stripped of background noise. iSCAT not only promises more sensitive diagnosis of diseases such as cancers, but will also shed light on many fundamental biochemical processes in nature,” said senior author Dr. Vahid Sandoghdar, director of the nano-optics division of the Max Planck Institute for the Science of Light. “Until now it was thought that if you want to detect scattered light from nanoparticles, you have to eliminate all background light. However, in recent years we have realized that it is more advantageous to illuminate the sample strongly and visualize the feeble signal of a tiny nanoparticle as a shadow against the intense background light. The strength of our method lies not only in the fact that it is so sensitive and that we can count target proteins in a sample, iSCAT also shows us the exact position of particles.”

Related Links:

Max Planck Institute for the Science of Light


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Respiratory QC Panel
Assayed Respiratory Control Panel
New
Centrifuge
Hematocrit Centrifuge 7511M4

Print article

Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The AI-based method can more accurately detect antibiotic resistance in deadly bacteria such as tuberculosis and staph (Photo courtesy of Adobe Stock)

New AI-Based Method Improves Diagnosis of Drug-Resistant Infections

Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.