We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Acoustic Device Designed to Separate Tumor Cells from Blood Cells Could Help Assess Cancer’s Spread

By LabMedica International staff writers
Posted on 23 Sep 2014
Print article
Image: Microfluidic device uses sound waves to sort tumor from white-blood cells as they flow through the channel from left to right (IDT [interdigital transducers] are sound source) (Photo courtesy of Ding X, et al).
Image: Microfluidic device uses sound waves to sort tumor from white-blood cells as they flow through the channel from left to right (IDT [interdigital transducers] are sound source) (Photo courtesy of Ding X, et al).
Researchers have devised a new way to separate cells by exposing them to sound waves as they flow through a tiny channel. Their device, approximately the size of a dime, could be used to detect the extremely rare tumor cells that circulate in cancer patients’ blood, helping clinicians predict whether a tumor is going to metastasize.

Separating cells with sound offers a milder option to existing cell-sorting technologies, which require tagging the cells with chemicals or exposing them to stronger mechanical forces that may damage them. “Acoustic pressure is very mild and much smaller in terms of forces and disturbance to the cell. This is a most gentle way to separate cells, and there’s no artificial labeling necessary,” said Dr. Ming Dao, a lead research scientist in Massachusetts Institute of Technology’s (MIT; Cambridge, MA, USA) department of materials and engineering, and one of the senior authors of the paper, which was published in September 2014 in the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).

Subra Suresh, president of Carnegie Mellon University (Pittsburgh, PA, USA), a professor of engineering emeritus, and a former dean of engineering at MIT, and Tony Jun Huang, a professor of engineering science and mechanics at Pennsylvania State University (Penn State; University Park, USA), are also senior authors of the article. The researchers have filed for a patent on the device; the technology of which they have demonstrated can be used to separate rare circulating cancer cells from white blood cells.

To sort cells using sound waves, scientists have previously built microfluidic devices with two acoustic transducers, which produce sound waves on either side of a microchannel. When the two waves meet, they combine to form a standing wave (a wave that remains in constant position). This wave generates a pressure node (line of low pressure) running parallel to the direction of cell flow. Cells that encounter this node are moved to the side of the channel; the distance of cell movement depends on their size and other properties such as compressibility.

However, these existing devices are inefficient: Because there is only one pressure node, cells can be pushed aside only short distances. The new device overcomes that obstacle by tilting the sound waves so they run across the microchannel at an angle: meaning that each cell encounters several pressure nodes as it flows through the channel. Each time it encounters a node, the pressure guides the cell a little further off center, making it simpler to capture cells of different sizes by the time they reach the end of the channel.

This simple modification drastically increases the efficiency of such devices, according to Taher Saif, a professor of mechanical science and engineering at the University of Illinois at Urbana-Champaign (USA). “That is just enough to make cells of different sizes and properties separate from each other without causing any damage or harm to them,” said Prof. Saif, who was not involved in this work.

In this study, the researchers first assessed the system with plastic beads, finding that it could separate beads with diameters of 9.9 and 7.3 micrometers with approximately 97% accuracy. They also devised a computer simulation that can predict a cell’s trajectory through the channel based on its size, density, and compressibility, as well as the angle of the sound waves, allowing them to tailor the device to separate different types of cells.

To evaluate whether the device could be useful for detecting circulating tumor cells, the researchers tried to separate breast cancer cells known as MCF-7 cells from white blood cells. These two cell types differ in size (20 micrometers in diameter for MCF-7 and 12 micrometers for white blood cells), as well as density and compressibility. The device successfully recovered about 71% of the cancer cells; the researchers plan to test it with blood samples from cancer patients to see how well it can detect circulating tumor cells in clinical settings. Such cells are very scarce; a 1-mL sample of blood may contain only a few tumor cells.

“If you can detect these rare circulating tumor cells, it’s a good way to study cancer biology and diagnose whether the primary cancer has moved to a new site to generate metastatic tumors,” Dr. Dao stated.

“This method is a step forward for detection of circulating tumor cells in the body. It has the potential to offer a safe and effective new tool for cancer researchers, clinicians, and patients,” Dr. Suresh concluded.

Related Links:

Massachusetts Institute of Technology
Carnegie Mellon University
Pennsylvania State University


Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
New
Chemiluminescence Immunoassay Analyzer
AutoLumo A6200/A6600
New
Myocardial Infarction Test
Savvycheck SensA Heart

Print article

Channels

Microbiology

view channel
Image: The test covers the most important bacterial pathogens across all age groups with a single cartridge (Photo courtesy of BHCS)

POC PCR Test Rapidly Detects Bacterial Meningitis Directly at Point of Sample Collection

Meningitis is an inflammation of the membranes surrounding the brain and spinal cord. Pathogens typically enter the body through the respiratory tract and spread via the bloodstream. The infection can... Read more

Pathology

view channel
Image: The technique predicts how well some breast cancer patients will respond to chemotherapy (Photo courtesy of Shutterstock)

New Technique Predicts Tumor’s Responsiveness to Breast Cancer Treatment

Breast cancer is the most common cancer among women worldwide, with 2.3 million new cases diagnosed each year. In the era of personalized medicine, targeted therapies for different types of breast cancer... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more

Industry

view channel
Image: The game-changing immunoassay diagnostics platform delivers results from whole blood sample in 10 minutes (Photo courtesy of SpinChip)

bioMérieux Acquires Norwegian Immunoassay Start-Up SpinChip Diagnostics

bioMérieux (Marcy l’Étoile, France) has agreed to acquire SpinChip Diagnostics (Oslo, Norway), the developer of a game-changing immunoassay diagnostics platform. The small benchtop analyzer is well adapted... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.