We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

By LabMedica International staff writers
Posted on 26 Oct 2014
Print article
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).
A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).

Although in use for more than 40 years as a primary chemotherapy drug, DOX is known to cause serious heart problems. To prevent these, doctors may limit the amount of DOX given to each patient so that the total amount a patient receives over her or his entire lifetime is 550 milligrams per square meter, or less. Furthermore, the necessity to stop treatment to protect the patient from heart disease may diminish the usefulness of DOX in treating cancer.

To counter the problem of DOX toxicity investigators at the University of North Carolina (Chapel Hill, USA) and North Carolina State University (Raleigh, USA) developed a novel DNA-based system that delivered the drug directly to cancer cells in a form that was harmless to normal tissues.

In the "nano-cocoon" system, DOX was sequestered inside a nanocapsule (cocoon) assembled from a long-chain single-stranded DNA molecule synthesized by the rolling-circle amplification (RCA) method. Multiple GC-pair sequences were integrated into the DNA chain to enhance the loading capacity for DOX. In addition to DOX, the core of the cocoon was loaded with the negatively charged enzyme DNase I, which was encapsulated in a positively charged acid-degradable polymeric nano-gel. The outside of the nano-cocoon was highlighted with folic acid residues to encourage cancer cell binding.

Following uptake of the nano-cocoon by a cancer cell, the acidic environment inside the cell caused the nano-gel to disintegrate, which released the DNase I. The activity of this enzyme degraded the structure of the nano-cocoon, which liberated the DOX to kill the cancer cell.

“This drug delivery system is DNA-based, which means it is biocompatible and less toxic to patients than systems that use synthetic materials,” said senior author Dr. Zhen Gu, assistant professor in the joint biomedical engineering program at North Carolina State University and the University of North Carolina. “This technique also specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. We are preparing to launch preclinical testing now. We are very excited about this system and think it holds promise for delivering a variety of drugs targeting cancer and other diseases.”

A complete description of the nano-cocoon drug delivery system was published in the October 13, 2014, online edition of the Journal of the American Chemical Society.

Related Links:

North Carolina State University
University of North Carolina


Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Unit-Dose Packaging solution
HLX
New
CVD Risk Test
GammaCoeur CVD Risk ELISA Test
New
Automated Nucleic Acid Extractor
eLab

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: Schematic overview of maternal biomarker discovery using cell-free RNA during pregnancy (Photo courtesy of Circulation Research (2024). DOI: 10.1161/CIRCRESAHA.124.325024)

Maternal Blood Test Identifies Congenital Heart Diseases in Fetus

Each year, around 1,000 children are born with a single ventricle heart defect (SVHD), a condition where one of the heart's lower chambers is underdeveloped, too small, or missing a valve.... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image

AI-Based Method Shows Promise for Pathological Diagnosis of Hereditary Kidney Diseases

Alport syndrome is a hereditary kidney disorder characterized by kidney dysfunction, sensorineural hearing loss, and ocular abnormalities. Early in the disease, patients experience hematuria, which is... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.