We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




A Subpopulation of Melanoma Cells Lacks VEGFR and Resists Antiangiogenic Therapy

By LabMedica International staff writers
Posted on 05 Nov 2014
Print article
Image: An intensity-colored image of blood flow in a PECAM1-positive tumor (Photo courtesy of the University of North Carolina School of Medicine).
Image: An intensity-colored image of blood flow in a PECAM1-positive tumor (Photo courtesy of the University of North Carolina School of Medicine).
Melanoma researchers have discovered a subpopulation of cancer cells that generate new blood vessels by expressing the vascular cell adhesion molecule PECAM1 (platelet endothelial cell adhesion molecule), but not VEGFR-2 (vascular endothelial growth factor), the major signaling molecule normally associated with new blood vessel formation (angiogenesis).

PECAM-1 also known as cluster of differentiation 31 (CD31) is a protein that in humans is encoded by the PECAM1 gene found on chromosome 17. PECAM-1 plays a key role in removing aged neutrophils from the body. It is found on the surface of platelets, monocytes, neutrophils, and some types of T-cells, and makes up a large portion of endothelial cell intercellular junctions. This protein is a member of the immunoglobulin superfamily and is likely involved in leukocyte migration, angiogenesis, and integrin activation.

Investigators at the University of North Carolina (Chapel Hill, USA) were searching for an explanation as to why antiangiogenic drugs targeted at VEGFR often failed to prevent melanoma growth and spread. Towards this end, they reported in the October 22, 2014, online edition of the journal Nature Communications that they had isolated what appeared to be noncancerous endothelial cells from melanoma tumors. However, genetic analysis revealed that these cells resembled cancer cells rather than endothelial cells, and that these cells did not express VEGFR.

Instead of VEGFR these cells expressed the vascular cell adhesion molecule PECAM1 and participated in a PECAM1-dependent form of angiogenesis. Clonally derived PECAM1-positive tumor cells coalesced to form PECAM1-dependent networks in vitro, and they generated well-perfused, VEGF-independent channels in mice.

“These cells looked very different from normal endothelial cells in cultures,” said senior author Dr. Andrew C. Dudley, assistant professor of cell biology and physiology at the University of North Carolina. “We did not know what these cells were. Over the course of a year we found that these cells had several markers similar to melanoma cells. For a long time the hope has been that antiangiogenic therapies would starve tumors of the nutrients they need to thrive, but these drugs have not worked as well as we all had hoped. There are likely several reasons why these drugs have not been effective; our research suggests that these previously uncharacterized cells could be one of the reasons.”

Related Links:
University of North Carolina

Gold Member
Turnkey Packaging Solution
HLX
Unit-Dose Packaging solution
HLX
New
Leishmania Test
Leishmania Real Time PCR Kit
New
Silver Member
Static Concentrator
BJP 10

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: Schematic overview of maternal biomarker discovery using cell-free RNA during pregnancy (Photo courtesy of Circulation Research (2024). DOI: 10.1161/CIRCRESAHA.124.325024)

Maternal Blood Test Identifies Congenital Heart Diseases in Fetus

Each year, around 1,000 children are born with a single ventricle heart defect (SVHD), a condition where one of the heart's lower chambers is underdeveloped, too small, or missing a valve.... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image

AI-Based Method Shows Promise for Pathological Diagnosis of Hereditary Kidney Diseases

Alport syndrome is a hereditary kidney disorder characterized by kidney dysfunction, sensorineural hearing loss, and ocular abnormalities. Early in the disease, patients experience hematuria, which is... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.