We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




MicroRNA Panel Identifies Mild Brain Trauma in a Mouse Model

By LabMedica International staff writers
Posted on 23 Nov 2014
Print article
A study conducted on a mouse model found that a panel of 13 serum microRNAs (miRNAs) could be used to identify the severity of damage to the brain and the risk of developing adverse effects following mild traumatic brain injury (mTBI).

MTBI is a heterogeneous injury that may lead to the development of neurological and behavioral disorders. In the absence of specific diagnostic markers, mTBI is often unnoticed or misdiagnosed. Previous research had found a link between microRNAs—snippets of about 20 nucleotides that block gene expression by attaching to molecules of messenger RNA (mRNA) in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA—and post-traumatic stress disorder. Therefore, investigators at the Uniformed Services University of the Health Sciences (Bethesda, MD, USA) sought to identify a similar relationship between miRNAs and mTBI.

MTBI was induced in test animals by varying the weight and fall height of an impactor rod. This treatment caused four different severity grades of mTBI. Injuries were characterized as mild by neurobehavioral severity assessment one day after the injury. All of the animals recovered after day one with no significant neurobehavioral alteration by day 30 post injury.

Results from serum miRNA profiles, which were published in the November 7, 2014, online edition of the journal PLOS ONE, clearly differentiated injured from uninjured animals. Overall, the number of miRNAs that were significantly modulated in injured animals compared to controls increased with the severity of the injury. Thirteen miRNAs were found to identify mTBI regardless of its severity within the mild spectrum of injury. Bioinformatics analyses revealed that the more severe brain injuries were associated with a greater number of miRNAs involved in brain related functions.

Senior author Dr. Radha K. Maheshwari, professor of pathology at the Uniformed Services University of the Health Sciences, said, “This important finding is a step forward in identifying objective biomarkers for mTBI that may be further validated to accurately and cost-effectively identify mTBI in service members and civilians with brain injuries. Our current effort is to identify the precise role these microRNAs play in mTBI which may help in development of mTBI therapies.”

Related Links:

Uniformed Services University of the Health Sciences


New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Coagulation Analyzer
CS-2400
New
Immunofluorescence Analyzer
MPQuanti

Print article

Channels

Molecular Diagnostics

view channel
Image: Researcher Kanta Horie places a sample in a mass spectrometer that measures protein levels in blood plasma and other fluids (Photo courtesy of WashU Medicine)

Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression

Several blood tests are currently available to assist doctors in diagnosing Alzheimer's disease in individuals experiencing cognitive symptoms. However, these tests do not provide insights into the clinical... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.