We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

By LabMedica International staff writers
Posted on 21 Jan 2015
Print article
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).
A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer, an aggressive type of the disease that currently has no targeted treatment options.

Approximately15% of breast tumors are found to be triple-negative, an especially aggressive type of the disease that is more likely to spread to other areas of the body than other types. Triple-negative breast cancer lacks the three molecules which are used to classify breast cancers, meaning it cannot be treated with targeted drugs commonly used to treat other types of breast cancer, such as tamoxifen and aromatase inhibitors for estrogen receptor (ER)- and progesterone receptor (PR)-positive breast cancer, or herceptin for HER2-positive breast cancer.

Dr. Yaohe Wang, from Barts Cancer Institute, Queen Mary University of London (UK), believes that the way viruses attack the body could be utilized to develop a breast cancer treatment he calls viro-immunotherapy.

When viruses attack the body, they locate and infect specific cells to reproduce, which ultimately kills the cell. Dr. Wang has engineered viruses which specifically target and kill cancer cells. This also has the twice the effect of engaging the immune system to kill any other cancer cells, which could prevent the cancer coming back or spreading throughout the body after treatment.

With about GBP 200,000 funding from research charity Breast Cancer Campaign (London, UK), Dr. Wang will engineer viruses he has earlier developed to treat other cancers. These viruses include genes which make proteins that are typically found on the surface of triple-negative breast cancer cells, so making this viro-immunotherapy specific for triple-negative breast cancer.

Katherine Woods, research communications manager at Breast Cancer Campaign, stated, “More than 7,500 women in the United Kingdom alone are diagnosed with triple-negative breast cancer every year, and there is no targeted treatment available for them. These women are left with very few treatment options, namely chemotherapy in addition to surgery or radiotherapy, and therefore it is essential we find new ways to treat this aggressive type of the disease. Dr. Wang’s pioneering research could lead to an effective and safe viro-immunotherapy treatment for triple-negative breast cancers, providing a much-needed new option to treat this form of the disease. This could ultimately save thousands of lives and bring us closer to our goal that by 2025, improved and more personalized treatments will reduce mortality from breast cancer by half.”

Dr. Wang will start the three-year project by developing the custom-made viruses, after which they will be tested on lab-grown triple-negative breast cancer cells, as well as mice implanted with triple-negative breast cancer cells.

Related Links:

Barts Cancer Institute, Queen Mary University of London


Gold Member
Troponin T QC
Troponin T Quality Control
Automated Blood Typing System
IH-500 NEXT
New
Thyroxine ELISA
T4 ELISA
New
Silver Member
Apolipoprotein A-I Assay
Apo A-I Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.