We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Self-Assembled Polymer Complexes Have Potential Drug Delivery Role

By LabMedica International staff writers
Posted on 28 Jan 2015
Print article
Image: A series of transmission electron microscopy (TEM) images shows the transition from cylindrical precursor nanoparticles to spherical nanoparticles (Photo courtesy of Dr. Andrew Dove, University of Warwick).
Image: A series of transmission electron microscopy (TEM) images shows the transition from cylindrical precursor nanoparticles to spherical nanoparticles (Photo courtesy of Dr. Andrew Dove, University of Warwick).
Drug developers have demonstrated the possibility of using mixtures of inert polymers with different configurations and tacticities that self-assemble without outside stimulus (stereocomplexation) to construct active particles that have potential use for controlled release and delivery applications.

Investigators at the University of Warwick (United Kingdom) prepared stereocomplex micelles from a mixture of poly(L-lactide)-b-poly(acrylic acid) and poly(D-lactide)-b-poly(acrylic acid) diblock copolymers in water via crystallization-driven self-assembly. They reported in the December 17, 2014, online edition of the journal Nature Communications that during the formation of these stereocomplex micelles, an unexpected morphological transition resulted in the formation of dense crystalline spherical micelles rather than cylinders.

The investigators theorized that each of the component polymers could carry an inactive drug precursor. When placed in close proximity, the component polymers would undergo stereocomplexation to form a new molecule containing the now active drug. The new particles would be taken up by cells where they would break down and release their drug cargo.

"We conceive that in the blood stream the particles would not be able to interact sufficiently to lead to release, only when they are taken into cells would the release be able to happen", said senior author Dr. Andrew Dove, professor of chemistry at the University of Warwick. "In this way, the drug can be targeted to only release where we want it to and therefore be more effective and reduce side effects. This research raises new possibilities in how we can administer medical treatments. We are planning to study this as a new treatment for cancer but the principle could potentially be applied to a wide range of diseases."

Related Links:
University of Warwick


Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Histamine ELISA
Histamine ELISA
New
Urine Strips
11 Parameter Urine Strips

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.