We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Upgraded Hydrogel Stimulates Growth of New Blood Vessels for Tissue Regeneration

By LabMedica International staff writers
Posted on 03 Feb 2015
Print article
Image: The micrograph shows the extensive infiltration of robust blood vessels (red) in a new hydrogel scaffold developed to help the healing of internal injuries. The purple cells are pericyte-like cells that surround new endothelial cells, helping to stabilize the vessels. The green cells are circulating through the new vascular system (Photo courtesy of Dr. Vivek Kumar, Rice University).
Image: The micrograph shows the extensive infiltration of robust blood vessels (red) in a new hydrogel scaffold developed to help the healing of internal injuries. The purple cells are pericyte-like cells that surround new endothelial cells, helping to stabilize the vessels. The green cells are circulating through the new vascular system (Photo courtesy of Dr. Vivek Kumar, Rice University).
An upgraded hydrogel for in vivo use as scaffolding for cellular growth incorporates features that overcome most of the limitations that has precluded use of this type of material up to now.

Major limitations of current tissue regeneration approaches using artificial scaffolds are (1) fibrous encapsulation, (2) lack of host cellular infiltration, (3) unwanted immune responses, (4) surface degradation preceding biointegration, and (5) artificial degradation byproducts. Specifically, for scaffolds larger than 200–500 micrometers, implants must be accompanied by generation of new blood vessels by the host (angiogenesis) in order to provide adequate nutrient/waste exchange in the newly forming tissue.

Investigators at Rice University (Houston, TX, USA) reported in the January 13, 2015, online edition of the journal ACS Nano that they had designed a peptide-based self-assembling nano-fibrous hydrogel containing cell-mediated degradation and pro-angiogenic constituents that specifically addressed the limitations of earlier hydrogels. This hydrogel could be easily delivered by syringe, was rapidly infiltrated by cells of hematopoietic and mesenchymal origin, and rapidly formed an extremely robust mature vascular network. Scaffolds showed no signs of fibrous encapsulation and after three weeks were resorbed into the native tissue.

"Implanted synthetic materials tended to become encapsulated by fibrous barriers that kept cells and blood vessels from infiltrating the scaffold," said senior author Dr. Jeffrey Hartgerink, professor of chemistry at Rice University. "That is an extremely common problem in synthetic materials put into the body. Some avoid this problem but if the body does not like a material and is not able to destroy it, the solution is to wall it off. As soon as that happens, the flow of nutrients across that barrier decreases to almost nothing. So the fact that we have developed syringe-directed delivery of a material that does not develop fibrous encapsulation is really important."

"One thing that differentiates our work is the quality of the blood vessels that are formed," said Dr. Hartgerink. "In a lot of the published literature, you see rings that only have the endothelial cell lining, and that indicates a very immature blood vessel. These types of vessels usually do not persist, and disappear shortly after they show up. In ours, you see that same endothelial cell layer, but surrounding it is a smooth muscle cell layer that indicates a much more mature vessel that is likely to persist. There are a lot of features about this hydrogel that come together to make it a unique system. If you look through the literature at what other people have done, each concept that is involved in our system probably exists somewhere already. The difference is that we have all these features in one place working together."

Related Links:

Rice University 


Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Unit-Dose Packaging solution
HLX
New
Incubator
HettCube 120
New
LH ELISA
Luteinizing Hormone ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: The bowel cancer breakthrough could result in better treatment outcomes (Photo courtesy of 123RF)

New RNA Molecules Can Help Predict Bowel Cancer Return Recurrence

Colorectal cancer accounts for 10% of all cancer-related deaths worldwide and was ranked as the second most common cause of cancer death in the United States in 2022. Currently, clinicians face diagnostic... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image

AI-Based Method Shows Promise for Pathological Diagnosis of Hereditary Kidney Diseases

Alport syndrome is a hereditary kidney disorder characterized by kidney dysfunction, sensorineural hearing loss, and ocular abnormalities. Early in the disease, patients experience hematuria, which is... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.