We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Genetically Engineered Lactobacilli Cure Diabetes in Rat Model

By LabMedica International staff writers
Posted on 09 Feb 2015
Print article
Image: Micrograph showing a rat cell re-programmed to express HNF-6 (red) and insulin (green). The nucleus is stained blue (Photo courtesy of Cornell University).
Image: Micrograph showing a rat cell re-programmed to express HNF-6 (red) and insulin (green). The nucleus is stained blue (Photo courtesy of Cornell University).
A novel concept for treating diabetes was demonstrated by feeding diabetic rats a diet containing human lactobacilli that had been genetically engineered to secrete the protein glucagon-like peptide-1 GLP-1(1–37), which induced significant long-term increases in insulin levels.

The inactive full-length form of GLP-1(1–37) has been shown previously to stimulate conversion of both rat and human intestinal epithelial cells into insulin-secreting cells. GLP-1 is normally induced by feeding and stimulates insulin secretion in response to glucose. It is a member of the incretin group of gastrointestinal hormones that cause an increase in the amount of insulin released from the beta cells of the islets of Langerhans after eating, even before blood glucose levels become elevated. They also slow the rate of absorption of nutrients into the blood stream by reducing gastric emptying and may directly reduce food intake. Incretins also inhibit glucagon release from the alpha cells of the Islets of Langerhans.

Investigators at Cornell University (Ithaca, NY, USA) examined whether oral administration of human commensal bacteria engineered to secrete GLP-1(1–37) could modulate glucose metabolism in a rat model of diabetes by reprogramming intestinal cells into glucose-responsive insulin-secreting cells. Toward this end they genetically engineered a strain of Lactobacillus to secrete GPL-1(1-37). The bacteria were fed to diabetic rats for 90 days.

Results published in the January 27, 2015, online edition of the journal Diabetes revealed that the rats receiving the engineered bacteria demonstrated a reduction of up to 30% in blood glucose levels. These rats developed insulin-producing cells within the upper intestine in numbers sufficient to replace approximately 25%–33% of the insulin capacity of nondiabetic healthy rats. Intestinal tissues in rats with reprogrammed cells expressed the pancreatic beta-cell markers MafA (mast cell function-associated antigen), PDX-1 (insulin promoter factor 1), and FoxA2 (forkhead box protein A2). HNF-6 (hepatocyte nuclear factor-6) expression was observed only in crypt epithelia expressing insulin and not in epithelia located higher on the villous axis.

Staining for other cell markers in rats treated with GLP-1(1–37)-secreting bacteria suggested that normal cells were not affected by the close physical proximity of reprogrammed cells.

“The amount of time to reduce glucose levels following a meal is the same as in a normal rat, and it is matched to the amount of glucose in the blood, just as it would be with a normal-functioning pancreas,” said senior author Dr. John D. March, professor of biological and environmental engineering at Cornell University. “It is moving the center of glucose control from the pancreas to the upper intestine.”

The GLP-1 technology has been licensed by BioPancreate, a wholly-owned subsidiary of the biopharmaceutical company Cortendo AB (Radnor, PA, USA), which will be attempting to adapt it for use as therapy for human diabetes.

Related Links:
Cornell University
Cortendo AB 


Gold Member
Troponin T QC
Troponin T Quality Control
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
New
Malaria Rapid Test
ASSURE Malaria P.f/P.v Rapid Test
New
Cytomegalovirus Assay
Alethia CMV

Print article

Channels

Immunology

view channel
Image: Example image of the high-throughput microscopy method used in the study, showing immune cells stained with different fluorescence markers (Photo courtesy of Felix Kartnig/CeMM, MedUni Vienna)

Cutting-Edge Microscopy Technology Enables Tailored Rheumatology Therapies

Rheumatoid arthritis is the most common inflammatory joint disorder, with women three times as likely to suffer from the condition as men. Treatment advances made over the past decades have led to the... Read more

Microbiology

view channel
Image: RNA sequencing directly from whole blood aims to expand access to LRTI testing (Photo courtesy of CARB-X)

Novel Test to Diagnose Bacterial Pneumonia Directly from Whole Blood

Pneumonia and lower-respiratory-tract infections (LRTIs) are among the top causes of illness and death globally, particularly in vulnerable populations such as the elderly, young children, and immunocompromised... Read more

Pathology

view channel
Image: The new method uses DNA sequencing to measure metabolites (Photo courtesy of 123RF)

New Metabolite Detection Method Using DNA Sequencing Could Transform Diagnostics

Metabolites play a vital role as biomarkers that provide insights into our health, and when their levels go awry, it can lead to diseases such as diabetes and phenylketonuria. Quantifying metabolites remains... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.