We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Double Targeting Approach Increases Potential for Cancer Treatment with Oncolytic Viruses

By LabMedica International staff writers
Posted on 02 Mar 2015
Print article
Image: Typical antibodies (left) unfold in the harsh environment of the cell. Camelid antibodies (right) are smaller and more stable (Photo courtesy of the Washington University School of Medicine).
Image: Typical antibodies (left) unfold in the harsh environment of the cell. Camelid antibodies (right) are smaller and more stable (Photo courtesy of the Washington University School of Medicine).
Cancer researchers have used a double targeting approach to direct oncolytic viruses specifically to tumor cells where they reproduce until the cancer cells burst, releasing more viruses to infect and ultimately destroy the tumor.

Investigators at the Washington University School of Medicine (St. Louis, MO, USA) modified an oncolytic adenovirus in two ways. At the transductional level, antibodies derived from camels or alpacas (camelids) against the tumor protein human carcinoembryonic antigen (CEA) were incorporated into the viral capsid. These antibodies enabled the virus to selectively infect cancer cells. At the transcriptional level, the gene for C-X-C chemokine receptor type 4 promoter was inserted into the viral genome. This gene would only be activated after successful infection of a cancer cell. The dual targeting mechanism was designed to insure that only cancer cells would be infected and destroyed.

Typically, antibodies are composed of two immunoglobulin (Ig) heavy chains and two Ig light chains. Camelids are unique among mammals as they have fully functional antibodies with two heavy chains, but lack the light chains usually paired with each heavy chain. This feature of camelid antibodies prompted their use for viral targeting.

The potential of the modified adenovirus was evaluated with cancer cells growing in culture. The data, which was reported in the February 18, 2015, online edition of the journal Molecular Therapy—Oncolytics, demonstrated that the double targeting approach increased specificity of infection and efficacy of replication of the oncolytic adenovirus.

“For decades, investigators have been putting human or mouse antibodies on viruses, and they have not worked — the antibodies would lose their targeting ability,” said senior author Dr. David T. Curiel, professor of radiation oncology at the Washington University School of Medicine. “It was a technical problem. During replication, the virus is made in one part of the cell, and the antibody is made in another. To incorporate the two, the antibody is dragged through the internal fluid of the cell. This is a harsh environment for the antibodies, so they unfold and lose their targeting ability. We found that when we incorporated the camelid antibodies into the virus, they retained their binding specificity. This opens the door to targeting these antibodies to specific tumor markers.”

“We want this new level of targeting specificity because it would allow us to inject the virus into the bloodstream, where it would exclusively infect and replicate in tumor cells, even if they are disseminated throughout the body,” said Dr. Curiel. “These viruses are already engineered to replicate only in tumors. These camelid antibodies would enable them to become even more tumor-specific and open the door for use in metastatic cancer.”

Related Links:

Washington University School of Medicine


New
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Unit-Dose Packaging solution
HLX
New
Quantitative Immunoassay Analyzer
AS050
New
Flow Cytometer
BF – 710

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: The bowel cancer breakthrough could result in better treatment outcomes (Photo courtesy of 123RF)

New RNA Molecules Can Help Predict Bowel Cancer Return Recurrence

Colorectal cancer accounts for 10% of all cancer-related deaths worldwide and was ranked as the second most common cause of cancer death in the United States in 2022. Currently, clinicians face diagnostic... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image

AI-Based Method Shows Promise for Pathological Diagnosis of Hereditary Kidney Diseases

Alport syndrome is a hereditary kidney disorder characterized by kidney dysfunction, sensorineural hearing loss, and ocular abnormalities. Early in the disease, patients experience hematuria, which is... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.