We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Nanoparticle-Based Hydrogel Liquefies Under Pressure for Delivery by Syringe

By LabMedica International staff writers
Posted on 04 Mar 2015
Print article
Image: Scanning electron microscopy images, taken at different magnifications, show the structure of new hydrogels made of nanoparticles interacting with long polymer chains. (Photo courtesy of Massachusetts Institute of Technology).
Image: Scanning electron microscopy images, taken at different magnifications, show the structure of new hydrogels made of nanoparticles interacting with long polymer chains. (Photo courtesy of Massachusetts Institute of Technology).
A hydrogel that liquefies under pressure but reforms as a gel when the pressure is released has been recruited as a delivery system for both hydrophobic and hydrophilic anticancer agents.

Investigators at the Massachusetts Institute of Technology (Cambridge, USA) created the hydrogel by mixing PEG-PLA (polyethylene glycol- polymerized lactic acid) nanoparticles with polymeric cellulose. Each polymer chain formed weak bonds with a number of nanoparticles, producing a loosely woven lattice of polymers and nanoparticles. As each attachment point was fairly weak, the bonds disassociated under the mechanical stress of being injected through a syringe. Once the shear forces had abated, the polymers and nanoparticles formed new attachments with different partners, returning the conglomerate to the gel form.

The composition of the gel allowed it to be loaded simultaneously with two different types of drugs. The PEG-PLA nanoparticles had an inner core capable of carrying small-molecule hydrophobic drugs, which include many chemotherapy agents. At the same time, the cellulose polymer, which existed in aqueous solution, could transport hydrophilic molecules such as proteins, including antibodies and growth factors.

A detailed description of the hydrogel as well as results of an in vivo experiment in which gels injected under the skin of mice survived and successfully released two drugs—one hydrophobic and one hydrophilic—over a period of several days, was published in the February 19, 2015, online edition of the journal Nature Communications.

“We are working with really simple materials,” said contributing author Dr. Mark Tibbitt, a postdoctoral researcher at the Massachusetts Institute of Technology. “They do not require any advanced chemical functionalization. Now you have a gel that can change shape when you apply stress to it, and then, importantly, it can re-heal when you relax those forces. That allows you to squeeze it through a syringe or a needle and get it into the body without surgery.”

Related Links:

Massachusetts Institute of Technology


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Automated Blood Typing System
IH-500 NEXT
New
Liquid Based Cytology Production Machine
LBP-4032
New
FLU/RSV Test
Humasis FLU/RSV Combo

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.