We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Study Details the Block by Block Assembly of DNA Nanotubes

By LabMedica International staff writers
Posted on 10 Mar 2015
Print article
Image: In the new method for building nanotubes, blocks tagged with a fluorescent dye are incorporated step by step, enabling researchers to monitor formation of the structures as they are constructed (Photo courtesy of Dr. Graham D. Hamblin, McGill University).
Image: In the new method for building nanotubes, blocks tagged with a fluorescent dye are incorporated step by step, enabling researchers to monitor formation of the structures as they are constructed (Photo courtesy of Dr. Graham D. Hamblin, McGill University).
A team of biomolecular engineers has developed a method for the block by block assembly of DNA nanotubes that controls the positioning of rungs along the backbone of the nanotubes, minimizes the polydispersity in their manufacture, and reduces the building costs.

Previously, researchers had prepared nanotubes using a method that relied on spontaneous assembly of DNA in solution. This method frequently introduced structural flaws and did not allow fine control of tube size.

Utilizing advances in single-molecule fluorescence microscopy, investigators at McGill University (Montreal, Canada) developed a new, low-cost method to build DNA nanotubes block by block. Nanotubes prepared in this fashion could be custom designed to a specific length and nucleotide sequence and were better suited for use in applications such as optical and electronic devices or smart drug-delivery systems.

The investigators reported in the February 23, 2015, online edition of the journal Nature Chemistry that they had constructed prototype structures of about 450 nm in contour length consisting of up to 20 repeat units. These were built using a cyclic scheme starting from a "foundation rung" specifically bound to a surface. Distinct rungs were then incorporated in a predetermined manner. Using fluorescently tagged rungs, single-molecule fluorescence studies demonstrated the robustness and structural fidelity of the constructs and confirmed the incorporation of the rungs in quantitative yield (greater than 95%) at each step of the cycle.

“Just like a Tetris game, where we manipulate the game pieces with the aim of creating a horizontal line of several blocks, we can now build long nanotubes block by block,” said first author Amani Hariri, a doctoral student in chemistry at McGill University. “By using a fluorescence microscope we can further visualize the formation of the tubes at each stage of assembly, as each block is tagged with a fluorescent compound that serves as a beacon. We can then count the number of blocks incorporated in each tube as it is constructed.”

Related Links:

McGill University


New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Automated Blood Typing System
IH-500 NEXT
New
Toxoplasma Gondii Test
Toxo IgG ELISA Kit
New
Silver Member
Oncology Molecular Diagnostic Test
BCR-ABL Dx ELITe MGB Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.