Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




The Captureseq Technique Is More Accurate for Low Expressing Genes and Long Non-Coding RNAs

By LabMedica International staff writers
Posted on 24 Mar 2015
The powerful new CaptureSeq technique for gene analysis was shown to be superior for detecting and quantifying genes with low expression while showing little technical variation and accurately measured differential expression of long non-coding RNAs (lncRNAs).

Long non-coding RNAs (long ncRNAs, lncRNA) are non-protein coding transcripts longer than 200 nucleotides. More...
This somewhat arbitrary limit distinguishes lncRNAs from small regulatory RNAs such as microRNAs (miRNAs), short interfering RNAs (siRNAs), Piwi-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), and other short RNAs. LncRNAs have been found to be involved in numerous biological roles including imprinting, epigenetic gene regulation, cell cycle and apoptosis, and metastasis and prognosis in solid tumors. Most lncRNAs are expressed only in a few cells rather than whole tissues, or they are expressed at very low levels, making them difficult to study.

RNA sequencing (RNAseq) samples the majority of expressed genes infrequently, owing to the large size, complex splicing and wide dynamic range of eukaryotic transcriptomes. This results in sparse sequencing coverage that can hinder robust isoform assembly and quantification. RNA capture sequencing (CaptureSeq) addresses this challenge by using oligonucleotide probes to capture selected genes or regions of interest for targeted sequencing. The method involves enriching transcripts of interest by hybridizing them to magnetic bead-linked oligonucleotides that are tiled across the region of interest, allowing for targeted purification, multiplexed library preparation, and RNA sequencing at a high depth.

Investigators at the Garvan Institute of Medical Research (Sydney, Australia) recently compared quantitative real time-PCR (qRT-PCR), RNA-sequencing (RNAseq), and capture sequencing (CaptureSeq) in terms of their ability to assemble and quantify lncRNAs and novel coding exons across 20 human tissues.

They reported in the March 9, 2015, online edition of the journal Nature Methods that CaptureSeq achieved eightfold better sequence coverage for all standard concentrations tested, corresponding to the assembly of as few as 1,550 transcripts in the input RNA. In contrast, RNAseq could not reliably detect low standard concentrations, precluding the measurement of low-abundance standards. In the human leukemia cell line K562, an estimated 42.1% of RNA transcripts were better quantified using CaptureSeq. RNAseq and CaptureSeq performed similarly for 53.2% of transcripts.

While RNAseq performed better than CaptureSeq for the most highly expressed 4.6% of transcripts enriched for housekeeping, structural, and metabolic genes, genes with low expression in K562 cells for which CaptureSeq provided superior quantitative accuracy were enriched for transcription factors and genes associated with cancer or other human diseases.
Finally, the investigators identified 13,796 loci that generated 45,399 lncRNA isoforms, of which 27,596 were previously unknown, with 20.6% more exons and 13.5% more introns compared with previous annotations.

Related Links:
Garvan Institute of Medical Research



New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Hybrid Pipette
SWITCH
Sample Transportation System
Tempus1800 Necto
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.