We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Feasibility Study Supports Use of Immunomagnetic Approach to Study Circulating Cancer Cells

By LabMedica International staff writers
Posted on 01 Apr 2015
Print article
Image: In the immunomagnetic approach, circulating cancer cells are attracted by specific biomarkers to bind to an array of micromagnets for further analyses (Photo courtesy of Dartmouth College).
Image: In the immunomagnetic approach, circulating cancer cells are attracted by specific biomarkers to bind to an array of micromagnets for further analyses (Photo courtesy of Dartmouth College).
Cancer researchers have combined the strength of magnetic separation with the specificity of immunochemical biomarker recognition to demonstrate the feasibility of capturing and analyzing rare circulating cells from the blood stream of cancer patients.

Writing in the March 4, 2015, online edition of the journal Scientific Reports, investigators at Dartmouth College (NH, USA) described a two-dimensional micromagnet array that they used to characterize generation of the magnetic field and to quantify the impact of micromagnets on rare cell separation. In this paper, they presented a theoretical framework and technical approach to implement microscale magnetic immunoassay through modulating the local magnetic field towards enhanced capture and distribution of rare cancer cells.

"The concept is to use novel cell-machine interfaces, integrated sensing, actuation, and biomarker recognition functionalities to isolate these rare cells (one per billion hematologic cells) from whole blood to determine malignancy unambiguously," said senior author Dr. John X.J Zhang, professor of engineering at Dartmouth College. "We will base the quantitative assessment on multiple tumor markers. This project demonstrates that a relatively simple blood test may eventually be able to provide unambiguous information to doctors about particular cancers in individuals."

The investigators found that there was good agreement between their theory and results of experiments using a human colon cancer cell line (COLO205) as the capture targets.

Related Links:

Dartmouth College


New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
Automated Blood Typing System
IH-500 NEXT
New
Silver Member
Benchtop Image Acquisition Device
Microwell Imager
New
Alpha-1-Antitrypsin ELISA
IDK alpha-1-Antitrypsin ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.