We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Suppression of Tumor Growth Linked to Actions of the Ubiquitin System

By LabMedica International staff writers
Posted on 21 Apr 2015
Print article
Image: Senior author Dr. Aaron Ciechanover shared the 2004 Nobel Prize in chemistry for his work on the ubiquitin system (Photo courtesy of the Technion-Israel Institute of Technology).
Image: Senior author Dr. Aaron Ciechanover shared the 2004 Nobel Prize in chemistry for his work on the ubiquitin system (Photo courtesy of the Technion-Israel Institute of Technology).
Image: The dramatic effect of these proteins on cancer growth: above the two tumors in the foreground (the control group) are tumors that express high levels of the proteins KPC1 and p50 (Photo courtesy of the Technion-Israel Institute of Technology).
Image: The dramatic effect of these proteins on cancer growth: above the two tumors in the foreground (the control group) are tumors that express high levels of the proteins KPC1 and p50 (Photo courtesy of the Technion-Israel Institute of Technology).
Cancer researchers working with mouse xenograft and human cancer cell cultures have identified components of the ubiquitin system that are linked to certain cellular processes, which act to suppress malignant growth and protect healthy tissues.

Ubiquitin is a small protein that exists in all eukaryotic cells. It performs myriad functions through conjugation to a large range of target proteins. The ubiquitin protein itself consists of 76 amino acids and has a molecular mass of about 8.5 kDa. Key features include its C-terminal tail and the seven lysine residues. It is highly conserved among eukaryotic species with human and yeast ubiquitin sharing 96% sequence identity. Ubiquitination is an enzymatic, protein post-translational modification (PTM) process in which the carboxylic acid of the terminal glycine from the di-glycine motif in the activated ubiquitin forms an amide bond to the epsilon amine of the lysine in the modified protein.

Investigators at the Technion-Israel Institute of Technology (Haifa, Israel) have focused on the protein KPC1 (Kip1 ubiquitylation-promoting complex 1), the catalytic subunit of the ubiquitin ligase KPC, and in particular on its relation to p105, a long precursor of the key cell regulator NF-kappaB.

The NF-kappaB (nuclear factor kappa-light-chain-enhancer of activated B cells) family of transcription factors comprises five structurally related proteins that form homo- and hetero-dimers through their highly conserved DNA binding/dimerization Rel homology domain. Binding of NF-kappaB to IkappaB proteins maintains NF-kappaB in an inactive state. Activation of NF-kappaB in normal cells is inducible and is a tightly controlled event. Upon stimulation, IkappaBs are phosphorylated by the IkappaB kinase (IKK) complex (consisting of IKK1, IKK2, and NEMO proteins). IkappaB phosphorylation leads to its rapid proteolysis, thereby allowing NF-kappaB to function as a transcription factor.

The investigators reported in the April 9, 2015, issue of the journal CELL that KPC1 ubiquitinated p105, resulting in the shortened protein p50. Working with mouse xenograft and human cancer cell cultures, they showed that high levels of KPC1 and p50 correlated with inhibition of tumor growth. Furthermore, KPC1 and p50 levels were lower in tumors than in normal tissue.

While these findings are of considerable importance in understanding molecular pathways that suppress cancer formation, senior author Nobel prize laureate Dr. Aaron Ciechanover, professor of biochemistry at the Technion-Israel Institute of Technology said, "Many more years are required to establish the research and gain a solid understanding of the mechanisms behind the suppression of the tumors. The development of a drug based on this discovery is a possibility, although not a certainty, and the road to such a drug is long and far from simple."

Related Links:

Technion-Israel Institute of Technology


Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Automatic Biochemistry Analyzer
Audmax 180 Evolution
New
Human Insulin CLIA
Human Insulin CLIA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.