We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Low-Temperature Plasma Treatment Kills Prostate Cancer Cells

By LabMedica International staff writers
Posted on 22 Apr 2015
Print article
Image: Low-temperature plasmas are formed in a chamber like the one shown in the photo by applying a high electric field across a gas at atmospheric pressure and room temperature (Photo courtesy of the University of York).
Image: Low-temperature plasmas are formed in a chamber like the one shown in the photo by applying a high electric field across a gas at atmospheric pressure and room temperature (Photo courtesy of the University of York).
By combining physics and biology a team of British cancer researchers has shown that low-temperature plasma (LTP) treatment kills prostate cancer cells in culture and may warrant development into a therapeutic tool to replace radiation and photodynamic methods.

Low-temperature plasmas have shown considerable potential as active agents in biomedicine. They are formed by applying a high electric field across a gas at atmospheric pressure and room temperature, which accelerates electrons into nearby atoms and molecules, leading to a cascade effect of multiple ionization, excitation and dissociation processes. This creates a complex and unique reactive environment consisting of positive and negative charges, strong localized electric fields, UV radiation, reactive species, and mainly background neutral molecules.

In the current study investigators at the University of York (United Kingdom) first verified the cytopathic effect of low-temperature plasma in two commonly used prostate cell lines: BPH-1 (benign) and PC-3 cells (malignant). The study was then extended to analyze the effects in paired normal and tumor (Gleason grade 7) prostate epithelial cells cultured directly from tissues taken from the same patient, allowing for direct comparison of the effects of LTP on both normal and cancer cells.

Results published in the April 2, 2015, online edition of the British Journal of Cancer revealed that LTP exposure resulted in high levels of DNA damage in primary prostate cells as well as a reduction in cell viability and colony-forming ability. Hydrogen peroxide formed in the culture medium was a likely facilitator of these effects. Necrosis and autophagy were recorded in primary cells, whereas cell lines exhibited apoptosis and necrosis.

First author Adam Hirst, a doctoral student at the University of York, said, "These results suggest that LTP may be a suitable candidate for focal therapy treatment of patients with early onset prostate cancer through the induction of high levels of DNA damage, leading to a substantial reduction in colony-forming capacity, and ultimately necrotic cell death, in clinically relevant and close-to-patient samples."

The next step in developing this treatment will involve testing the method on three-dimensional replica tumors in order to monitor the precision of plasma application. If all subsequent trials are successful, the researchers believe that LTP could be used to treat cancer patients within 10-15 years.

Related Links:

University of York


New
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Unit-Dose Packaging solution
HLX
New
Thyroid ELISA Kit
AESKULISA a-TPO
New
Silver Member
Rubella Infection ELISA
ReQuest RUBELLA IgM ELISA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: The bowel cancer breakthrough could result in better treatment outcomes (Photo courtesy of 123RF)

New RNA Molecules Can Help Predict Bowel Cancer Return Recurrence

Colorectal cancer accounts for 10% of all cancer-related deaths worldwide and was ranked as the second most common cause of cancer death in the United States in 2022. Currently, clinicians face diagnostic... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image

AI-Based Method Shows Promise for Pathological Diagnosis of Hereditary Kidney Diseases

Alport syndrome is a hereditary kidney disorder characterized by kidney dysfunction, sensorineural hearing loss, and ocular abnormalities. Early in the disease, patients experience hematuria, which is... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.