We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Honokiol Prevents Hypertrophy in Mice by Increasing Mitochondrial Sirt3 Activity

By LabMedica International staff writers
Posted on 26 Apr 2015
Print article
Image: Seed cone from Magnolia grandiflora, a primary source of honokiol (Photo courtesy of Wikimedia Commons).
Image: Seed cone from Magnolia grandiflora, a primary source of honokiol (Photo courtesy of Wikimedia Commons).
The ancient herbal therapy substance honokiol, which is derived from the bark, seed cones, and leaves of trees belonging to the genus Magnolia, has been found in a recent study to have chemical properties that enable it to protect the heart from hypertrophy.

Honokiol is a natural biphenolic compound with anti-inflammatory, anti-oxidative, anti-tumor, and neuroprotective properties that can readily cross the blood brain barrier and the blood-cerebrospinal fluid barrier. As a result, it is a potentially potent therapeutic agent with high bioavailability.

Investigators at the University of Chicago (IL, USA) worked with a mouse model of cardiac hypertrophy. They reported in the April 14, 2015, online edition of the journal Nature Communications, that when injected into mice, honokiol reduced the excess growth of individual cardiac muscle cells, decreased ventricular wall thickness, and prevented the accumulation of interstitial fibrosis, a stiffening of cardiac muscle cells that reduces their ability to contract. The compound also protected heart muscle cells from the damage caused by oxidative stress.

The data suggested that the anti-hypertrophic effects of honkiol depended on activation of the deacetylase Sirt3 (silent mating type information regulation 2 homolog) 3. The investigators demonstrated that honkiol was present in mitochondria where it enhanced Sirt3 expression nearly twofold. They suggested that honokiol might bind to Sirt3 to further increase its activity. Increased Sirt3 activity was associated with reduced acetylation of mitochondrial Sirt3 substrates, MnSOD and oligomycin-sensitivity conferring protein (OSCP).

Manganese superoxide dismutase (MnSOD) is the primary antioxidant enzyme that protects cells from oxidative stress by catalyzing dismutation of superoxide to hydrogen peroxide and oxygen in the mitochondria of eukaryotic cells.

Honokiol treatment increased mitochondrial rate of oxygen consumption and reduced ROS (reactive oxygen species) synthesis in wild type, but not in cells that lacked the gene for Sirt3. Moreover, honokiol-treatment blocked cardiac fibroblast proliferation and differentiation to myofibroblasts in a Sirt3-dependent manner.

"Honokiol, by increasing SIRT3 levels, effectively blocked both the induction and progression of cardiac hypertrophy in mice," said senior author Dr. Mahesh Gupta, professor of surgery at the University of Chicago. "It even mitigated preexisting cardiac hypertrophy. This has the potential to play a significant role in the prevention and treatment of heart failure. To the best of our knowledge, this is the first report to describe a pharmacologic activator of SIRT3. Until now, caloric restriction combined with endurance exercise has been the only way to boost SIRT3 levels. Very few people have been able to follow such a rigorous regimen."

Related Links:

University of Chicago


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Automated Blood Typing System
IH-500 NEXT
New
Toxoplasma Gondii Test
Toxo IgG ELISA Kit
New
Alpha-1-Antitrypsin ELISA
IDK alpha-1-Antitrypsin ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.