We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel Stem Cell Therapy Eliminates Brain Tumors in Mouse Model

By LabMedica International staff writers
Posted on 04 May 2015
Print article
Image: Tagged therapeutic stem cells (green) are targeting breast cancer metastases (red) in the brain of a mouse model (Photo courtesy of Dr. Khalid Shah, Massachusetts General Hospital).
Image: Tagged therapeutic stem cells (green) are targeting breast cancer metastases (red) in the brain of a mouse model (Photo courtesy of Dr. Khalid Shah, Massachusetts General Hospital).
Cancer researchers have developed a novel stem cell therapeutic approach for treating breast cancer that has spread to the brain.

Investigators at Massachusetts General Hospital (Boston, USA) and the Harvard Stem Cell Institute (Boston, MA, USA) initially developed an in vivo imageable breast-to-brain metastasis mouse model. Using real time in vivo imaging and subsequent composite fluorescence imaging, they demonstrated in the brains of the mice widespread distribution of micro- and macro-metastasis in different stages of metastatic progression. They also showed extravasation of tumor cells and the close association of tumor cells with blood vessels in the brain thus mimicking the multi-foci metastases observed in human patients.

To treat the breast tumors that had developed in the brains of the mice the investigators created a line of genetically engineered adult stem cells. The stem cells, which were known to be naturally attracted toward tumors in the brain, were modified in two ways. The genomes of the stem cells were altered by insertion of two genes, the gene for a variant of TRAIL (TNF receptor superfamily member 10A/10B apoptosis-inducing ligand) and the gene for herpes simplex virus thymidine kinase (HSV-TK).

TRAIL is a cytokine that is produced and secreted by most normal tissue cells. It causes apoptosis primarily in tumor cells by binding to certain death receptors. Since the mid-1990s it has been used as the basis for several anti-cancer drugs. The presence of the HSV-TK gene rendered the stem cells susceptible to the effects of the antiviral drug ganciclovir.

In experiments described in the April 24, 2015, online edition of the journal Brain, the investigators injected the modified stem cells into the brains of the mice. Imaging confirmed that the stem cells traveled to multiple metastatic sites and not to tumor-free areas. TRAIL secreted by the stem cells reduced growth of the tumors. Following inhibition of tumor growth, the stem cells were destroyed by injecting the mice with ganciclovir.

"Metastatic brain tumors - often from lung, breast or skin cancers - are the most commonly observed tumors within the brain and account for about 30% of advanced breast cancer metastases," said senior author Dr. Khalid Shah, professor of radiology and neurology at Massachusetts General Hospital. "Our results are the first to provide insight into ways of targeting brain metastases with stem-cell-directed molecules that specifically induce the death of tumor cells and then eliminating the therapeutic stem cells."

Related Links:

Massachusetts General Hospital
Harvard Stem Cell Institute


New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Histamine ELISA
Histamine ELISA
New
Gold Member
Rotavirus Rapid Test
Rotavirus Cassette

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.