We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




DNA Repair Map Expected to Enhance Human Genome Studies

By LabMedica International staff writers
Posted on 10 May 2015
Print article
Researchers have created a map of the entire human genome that shows where repairs to DNA that has been damaged by radiation or chemical treatment are made.

Investigators at the University of North Carolina (Chapel Hill, USA) developed a technique called XR-Seq (excision repair sequencing) in order to prepare the map, which was presented in a paper published in the May 1, 2015, issue of the journal Genes & Development.

Human nucleotide excision repair generates two incisions surrounding the site of damage, creating a polymer of approximately 30 repeating units. In XR-seq, this fragment is isolated and subjected to high-throughput sequencing.

The investigators used XR-seq to produce stranded, nucleotide-resolution maps of repair of two UV-induced DNA damages in human cells: cyclobutane pyrimidine dimers (CPDs) and (6-4) pyrimidine–pyrimidone photoproducts [(6-4)PPs]. In wild-type cells, CPD repair was highly associated with transcription, specifically with the template strand.

Experiments in cells defective in either transcription-coupled excision repair or general excision repair isolated the contribution of each pathway to the overall repair pattern and showed that transcription-coupled repair of both photoproducts occurred exclusively on the template strand. XR-seq maps captured transcription-coupled repair at sites of divergent gene promoters and bidirectional enhancer RNA (eRNA) production at enhancers. XR-seq data also uncovered the repair characteristics and novel sequence preferences of CPDs and (6-4)PPs.

"Now we can say to a fellow scientist, tell us the gene you are interested in or any spot on the genome, and we will tell you how it is repaired," said senior author Dr. Aziz Sancar, professor of biochemistry and biophysics at the University of North Carolina. "Out of six billion base pairs, pick out a spot and we will tell you how it is repaired."

It is expected that XR-seq and the resulting repair maps will facilitate studies of the effects of genomic location, chromatin context, transcription, and replication on DNA repair in human cells.

Related Links:

University of North Carolina


Gold Member
Hematology Analyzer
Swelab Lumi
Automated Blood Typing System
IH-500 NEXT
New
Anti-Secukinumab ELISA
LISA-TRACKER anti-Secukinumab
New
Chemistry Analyzer
MS100

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.