We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




New Mapping Technique Reveals Organization of Neuron Networks

By LabMedica International staff writers
Posted on 10 May 2015
Print article
Image: Researchers have developed a method to map the circuitry of the brain with a “neuronal positioning system” (NPS) (Photo courtesy of The Hebrew University of Jerusalem).
Image: Researchers have developed a method to map the circuitry of the brain with a “neuronal positioning system” (NPS) (Photo courtesy of The Hebrew University of Jerusalem).
A new technique permits neuroscience researchers to map the location of the axonal branches (arbors) of many individual neurons in the same tissue simultaneously.

Investigators at The Hebrew University of Jerusalem (Israel) and Harvard University (Cambridge, MA, USA) have significantly improved the retrograde tracer method for identifying axon location.

Retrograde tracing is a research method which is used in neuroscience to trace neural connections from their point of termination (the synapse) to their source (the cell body). The opposite technique is called anterograde tracing and is used to trace neural connections from their source to their point of termination (i.e. from cell body to synapse). Both the anterograde and retrograde tracing techniques are based on the visualization of the biological process of axonal transport. The anterograde and retrograde tracing techniques allow the detailed assessment of neuronal connections from a single population of neurons to their various targets throughout the nervous system. These techniques allow the "mapping" of connections between neurons in a particular structure (e.g., the eye) and the target neurons in the brain.

The investigators reported in the April 27, 2015, online edition of the journal Nature Methods that they had developed a method—a "neuronal positioning system" or NPS—to map the location of axonal arbors of many individual neurons simultaneously via the spectral properties of retrogradely transported dye-labeled vesicles.

To perform this technique, the investigators injected overlapping regions of an axon target area with three or more different colored retrograde tracers. The combinations and intensities of the colors in the individual vesicles depended on how far they were transported into the portion of the nerve cell that contained the nucleus but did not incorporate the dendrites or axon. The data obtained enabled the investigators to calculate the projection sites of each neuron's axon.

Contributing author Dr. Alex Binshtok, professor of medical neurobiology at The Hebrew University of Jerusalem, said, “The new method that we developed allows us to answer a "big question" in neuroscience about the organizational principles of neuronal circuits. Using the NPS technique that maps many axons in same tissue, we now can study what defines the routes along which the neurons will send their projections, as well as their targets. We can also learn how the wiring of the neuronal circuits changes during development and in a variety of pathological conditions. The answers to these questions will be the first step to comprehending how the information flows and is processed in the nervous system, and how changes in the neuronal organization affect neuronal function. I believe many scientists will find the NPS approach useful to help them answer the question of how the brain works.”

Related Links:

The Hebrew University of Jerusalem
Harvard University 


New
Gold Member
Thyroid Stimulating Hormone Assay
TSH EIA 96 Test
Unit-Dose Packaging solution
HLX
New
ELISA System
ABSOL HS DUO
New
Monkeypox Test
Monkeypox Virus Rapid Antibody Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: The bowel cancer breakthrough could result in better treatment outcomes (Photo courtesy of 123RF)

New RNA Molecules Can Help Predict Bowel Cancer Return Recurrence

Colorectal cancer accounts for 10% of all cancer-related deaths worldwide and was ranked as the second most common cause of cancer death in the United States in 2022. Currently, clinicians face diagnostic... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image

AI-Based Method Shows Promise for Pathological Diagnosis of Hereditary Kidney Diseases

Alport syndrome is a hereditary kidney disorder characterized by kidney dysfunction, sensorineural hearing loss, and ocular abnormalities. Early in the disease, patients experience hematuria, which is... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.