We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBE SCIENTIFIC, LLC

Download Mobile App




New Mapping Technique Reveals Organization of Neuron Networks

By LabMedica International staff writers
Posted on 10 May 2015
A new technique permits neuroscience researchers to map the location of the axonal branches (arbors) of many individual neurons in the same tissue simultaneously.

Investigators at The Hebrew University of Jerusalem (Israel) and Harvard University (Cambridge, MA, USA) have significantly improved the retrograde tracer method for identifying axon location.

Retrograde tracing is a research method which is used in neuroscience to trace neural connections from their point of termination (the synapse) to their source (the cell body). More...
The opposite technique is called anterograde tracing and is used to trace neural connections from their source to their point of termination (i.e. from cell body to synapse). Both the anterograde and retrograde tracing techniques are based on the visualization of the biological process of axonal transport. The anterograde and retrograde tracing techniques allow the detailed assessment of neuronal connections from a single population of neurons to their various targets throughout the nervous system. These techniques allow the "mapping" of connections between neurons in a particular structure (e.g., the eye) and the target neurons in the brain.

The investigators reported in the April 27, 2015, online edition of the journal Nature Methods that they had developed a method—a "neuronal positioning system" or NPS—to map the location of axonal arbors of many individual neurons simultaneously via the spectral properties of retrogradely transported dye-labeled vesicles.

To perform this technique, the investigators injected overlapping regions of an axon target area with three or more different colored retrograde tracers. The combinations and intensities of the colors in the individual vesicles depended on how far they were transported into the portion of the nerve cell that contained the nucleus but did not incorporate the dendrites or axon. The data obtained enabled the investigators to calculate the projection sites of each neuron's axon.

Contributing author Dr. Alex Binshtok, professor of medical neurobiology at The Hebrew University of Jerusalem, said, “The new method that we developed allows us to answer a "big question" in neuroscience about the organizational principles of neuronal circuits. Using the NPS technique that maps many axons in same tissue, we now can study what defines the routes along which the neurons will send their projections, as well as their targets. We can also learn how the wiring of the neuronal circuits changes during development and in a variety of pathological conditions. The answers to these questions will be the first step to comprehending how the information flows and is processed in the nervous system, and how changes in the neuronal organization affect neuronal function. I believe many scientists will find the NPS approach useful to help them answer the question of how the brain works.”

Related Links:

The Hebrew University of Jerusalem
Harvard University 



Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Serological Pipet Controller
PIPETBOY GENIUS
New
Clostridium Difficile Toxin A+B Combo Card Test
CerTest Clostridium Difficile Toxin A+B
New
Silver Member
Autoimmune Hepatitis Test
LKM-1-Ab ELISA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: A simple blood test could replace surgical biopsies for early detecion of heart transplant rejection (Photo courtesy of Shutterstock)

Blood Test Detects Organ Rejection in Heart Transplant Patients

Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more

Pathology

view channel
These images illustrate how precision oncology Organ Chips recapitulate individual patients’ responses to chemotherapy (Photo courtesy of Wyss Institute at Harvard University)

Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response

Esophageal adenocarcinoma (EAC), one of the two primary types of esophageal cancer, ranks as the sixth leading cause of cancer-related deaths worldwide and currently lacks effective targeted therapies.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.