We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




High Blood Sugar in Diabetes Disrupts Mitochondrial Enzyme Activity

By LabMedica International staff writers
Posted on 20 May 2015
Print article
Image: An electron microscope image shows dark-stained O-GlcNAc transferase localized to one complex in the mitochondrial membrane (left) and scattered to the inside of the mitochondria (right) (Photo courtesy of Dr. Partha Banerjee, Johns Hopkins University).
Image: An electron microscope image shows dark-stained O-GlcNAc transferase localized to one complex in the mitochondrial membrane (left) and scattered to the inside of the mitochondria (right) (Photo courtesy of Dr. Partha Banerjee, Johns Hopkins University).
The damage caused to the body by the high levels of blood sugar that characterize diabetes seems to be due to disturbances caused in the activity of a critical mitochondrial enzyme.

Investigators at Johns Hopkins University (Baltimore, MD, USA) worked with a rat diabetes model. They were particularly interested in the metabolic pathways involved in O-linked N-acetylglucosaminylation (O-GlcNAcylation), a reversible post-translational modification in which a sugar moiety is added to serine/threonine residues of cytosolic or nuclear proteins. Catalyzed by O-GlcNAc-transferase (OGT) and removed by O-GlcNAcase (OGA), this dynamic modification is dependent on environmental glucose concentration. O-GlcNAcylation regulates the activities of a wide panel of proteins involved in almost all aspects of cell biology.

The investigators reported in the April 27, 2015, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) that analyses of purified rat heart mitochondria from normal and streptozocin-treated diabetic rats showed strikingly different OGT and OGA localizations and expression levels. Live cell OGA activity assays established the presence of O-GlcNAcase within the mitochondria. Furthermore, the inner mitochondrial membrane transporter, pyrimidine nucleotide carrier, transported UDP-GlcNAc from the cytosol to the inside of the mitochondria. Knockdown of this transporter substantially lowered mitochondrial O-GlcNAcylation.

In addition, inhibition of OGT or OGA activity within neonatal rat cardiomyocytes significantly affected energy production, mitochondrial membrane potential, and mitochondrial oxygen consumption.

"Sugar itself is not toxic, so it has been a mystery why high blood sugar can have such a profound effect on the body," said senior author Dr. Gerald Hart, professor of biological chemistry at Johns Hopkins University. "The answer seems to be that high blood sugar disrupts the activity of a molecule that is involved in numerous processes within the cell. The net effect of the changes in O-GlcNAc-related activity is to make energy production in the mitochondria less efficient so that the mitochondria begin to produce more heat and damaging molecules as byproducts of the process."

Related Links:

Johns Hopkins University


Gold Member
Troponin T QC
Troponin T Quality Control
Unit-Dose Packaging solution
HLX
New
Human Immunodeficiency Virus Assay
RealLine HIV Quantitative Kit
New
Sulfidoleukotrienes (sLT) Assay
CAST ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: The bowel cancer breakthrough could result in better treatment outcomes (Photo courtesy of 123RF)

New RNA Molecules Can Help Predict Bowel Cancer Return Recurrence

Colorectal cancer accounts for 10% of all cancer-related deaths worldwide and was ranked as the second most common cause of cancer death in the United States in 2022. Currently, clinicians face diagnostic... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image

AI-Based Method Shows Promise for Pathological Diagnosis of Hereditary Kidney Diseases

Alport syndrome is a hereditary kidney disorder characterized by kidney dysfunction, sensorineural hearing loss, and ocular abnormalities. Early in the disease, patients experience hematuria, which is... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.