We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




High Blood Sugar in Diabetes Disrupts Mitochondrial Enzyme Activity

By LabMedica International staff writers
Posted on 20 May 2015
Print article
Image: An electron microscope image shows dark-stained O-GlcNAc transferase localized to one complex in the mitochondrial membrane (left) and scattered to the inside of the mitochondria (right) (Photo courtesy of Dr. Partha Banerjee, Johns Hopkins University).
Image: An electron microscope image shows dark-stained O-GlcNAc transferase localized to one complex in the mitochondrial membrane (left) and scattered to the inside of the mitochondria (right) (Photo courtesy of Dr. Partha Banerjee, Johns Hopkins University).
The damage caused to the body by the high levels of blood sugar that characterize diabetes seems to be due to disturbances caused in the activity of a critical mitochondrial enzyme.

Investigators at Johns Hopkins University (Baltimore, MD, USA) worked with a rat diabetes model. They were particularly interested in the metabolic pathways involved in O-linked N-acetylglucosaminylation (O-GlcNAcylation), a reversible post-translational modification in which a sugar moiety is added to serine/threonine residues of cytosolic or nuclear proteins. Catalyzed by O-GlcNAc-transferase (OGT) and removed by O-GlcNAcase (OGA), this dynamic modification is dependent on environmental glucose concentration. O-GlcNAcylation regulates the activities of a wide panel of proteins involved in almost all aspects of cell biology.

The investigators reported in the April 27, 2015, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) that analyses of purified rat heart mitochondria from normal and streptozocin-treated diabetic rats showed strikingly different OGT and OGA localizations and expression levels. Live cell OGA activity assays established the presence of O-GlcNAcase within the mitochondria. Furthermore, the inner mitochondrial membrane transporter, pyrimidine nucleotide carrier, transported UDP-GlcNAc from the cytosol to the inside of the mitochondria. Knockdown of this transporter substantially lowered mitochondrial O-GlcNAcylation.

In addition, inhibition of OGT or OGA activity within neonatal rat cardiomyocytes significantly affected energy production, mitochondrial membrane potential, and mitochondrial oxygen consumption.

"Sugar itself is not toxic, so it has been a mystery why high blood sugar can have such a profound effect on the body," said senior author Dr. Gerald Hart, professor of biological chemistry at Johns Hopkins University. "The answer seems to be that high blood sugar disrupts the activity of a molecule that is involved in numerous processes within the cell. The net effect of the changes in O-GlcNAc-related activity is to make energy production in the mitochondria less efficient so that the mitochondria begin to produce more heat and damaging molecules as byproducts of the process."

Related Links:

Johns Hopkins University


New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Silver Member
Benchtop Image Acquisition Device
Microwell Imager
New
17 Beta-Estradiol Assay
17 Beta-Estradiol Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.