We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Interferon-Lambda Prevents West Nile Virus from Crossing the Blood-brain Barrier

By LabMedica International staff writers
Posted on 24 May 2015
Print article
Image: Mosquitoes are known to infect people and animals with West Nile virus. Studying West Nile virus infection in mice, researchers have shown that the antiviral compound interferon-lambda tightens the blood-brain barrier, making it harder for the virus to invade the brain (Photo courtesy of the CDC – [US] Centers for Disease Control and Prevention).
Image: Mosquitoes are known to infect people and animals with West Nile virus. Studying West Nile virus infection in mice, researchers have shown that the antiviral compound interferon-lambda tightens the blood-brain barrier, making it harder for the virus to invade the brain (Photo courtesy of the CDC – [US] Centers for Disease Control and Prevention).
The cytokine interferon-lambda prevents West Nile virus from infecting brain cells by reducing transport of large molecules across the blood-brain barrier.

Although interferon-lambda [also known as type III interferon or interleukin-28 (IL-28)/IL-29] was known to restrict infection by several viruses, its inhibitory mechanism had not been determined. To explain the protective effect of interferon-lambda, investigators at the Washington University School of Medicine (St. Louis, USA) worked with cultures of mouse keratinocytes and dendritic cells and with a line of mice that had been genetically engineered to lack the gene for the interferon-lambda receptor (IFNLR1).

Experiments with cell cultures failed to show a direct antiviral effect of added interferon-lambda, even though expression of interferon-stimulated genes was induced.

In animal studies, normal mice and mice lacking the IFNLR1 gene were treated with interferon-lambda at the same time they were infected with the West Nile virus. The mice received additional interferon-lambda treatments two and four days following infection.

Results published in the April 22, 2015, online edition of the journal Science Translational Medicine revealed that there were no differences in West Nile virus burden between normal and mutant mice in the draining lymph nodes, spleen, or blood. On the other hand, there was increased West Nile virus infection in the brain and spinal cord of the mutant mice, but this was not associated with a direct antiviral effect in mouse neurons. Ultimately it was seen that while typically less than 20% of normal, untreated mice survived such a high dose of the virus, survival rates rose to more than 40% of the mice treated with interferon-lambda.

Additional experiments revealed that treatment of mice with pegylated interferon-lambda resulted in decreased blood-brain barrier permeability, reduced West Nile virus infection in the brain without affecting the number of virus particles in the blood, and improved survival against lethal virus challenge. An in vitro model of the blood-brain barrier showed that interferon-lambda signaling in mouse brain microvascular endothelial cells increased electrical resistance, decreased virus movement across the barrier, and modulated tight junction protein localization in protein synthesis.

"Viruses are most dangerous when they enter the brain," said senior author Dr. Michael Diamond, professor of medicine at the Washington University School of Medicine. "Compared with untreated mice, we found significantly lower concentrations of the virus in the brain among mice treated with interferon-lambda. Interferon-lambda has significantly fewer receptors in the body, which may mean using it as a treatment is likely to have fewer side effects. It is also possible that interferon-lambda may influence other protective barriers in the body, such as those in the skin and the gut, an area of research my laboratory is investigating."

Related Links:

Washington University School of Medicine


New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
Unit-Dose Packaging solution
HLX
New
Incubator
HettCube 120
New
Leishmania Test
Leishmania Real Time PCR Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: The bowel cancer breakthrough could result in better treatment outcomes (Photo courtesy of 123RF)

New RNA Molecules Can Help Predict Bowel Cancer Return Recurrence

Colorectal cancer accounts for 10% of all cancer-related deaths worldwide and was ranked as the second most common cause of cancer death in the United States in 2022. Currently, clinicians face diagnostic... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image

AI-Based Method Shows Promise for Pathological Diagnosis of Hereditary Kidney Diseases

Alport syndrome is a hereditary kidney disorder characterized by kidney dysfunction, sensorineural hearing loss, and ocular abnormalities. Early in the disease, patients experience hematuria, which is... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.