We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Sorting and Selecting Cancer Cells by Their Motility Will Advance Understanding of Metastatic Processes

By LabMedica International staff writers
Posted on 03 Jun 2015
Print article
Image: Micrograph of individual cancer cells that were isolated according to their motility. The cell on the left is less likely to metastasize (Photo courtesy of University of Michigan).
Image: Micrograph of individual cancer cells that were isolated according to their motility. The cell on the left is less likely to metastasize (Photo courtesy of University of Michigan).
In order to develop a better understanding of the mechanisms that cause some cancer cells to break away from the primary tumor and migrate to other parts of the body, a team of cancer researchers has created an instrument for sorting and selecting cancer cells based on their motility.

Tumor cell migration toward and into capillaries is an early and key event in cancer metastasis, yet not all cancer cells are imbued with the same capability to do so. This heterogeneity within a tumor is a fundamental property of cancer.

Conventional in vitro migration platforms have so far related to cell populations as an aggregate, which has led to a masking of intrinsic differences among cells. While some migration assays have reported the ability to resolve single cells, these platforms did not provide for selective retrieval of the distinct migrating and non-migrating cell populations for further analysis.

Therefore, to study the intrinsic differences in cells responsible for chemotactic heterogeneity, investigators at the University of Michigan (Ann Arbor, USA) developed a single-cell migration platform so that individual cells’ migration behavior could be studied and the heterogeneous population sorted based upon chemotactic phenotype. Furthermore, after migration, highly chemotactic and non-chemotactic cells were retrieved and proved viable for later molecular analysis of their differences.

In addition, as described in a paper published in the May 18, 2015, online edition of the journal Scientific Reports, the investigators modified the migration channel to resemble lymphatic capillaries to better understand how certain cancer cells are able to move through geometrically confining spaces.

"This work demonstrates an elegant approach to the study of cancer cell metastasis by combining expertise in engineering and biology," said senior author Dr. Euisik Yoon, professor of electrical engineering, computer science, and biomedical engineering at the University of Michigan. "In past decades, engineers have developed biological tools with better resolution, higher sensitivity, selectivity, and higher throughput. However, without compelling applications, these engineering tools have little practical relevance. The goal of our lab is to develop tools that can be widely disseminated to the biology community to eventually impact clinical care for patients."

Related Links:

University of Michigan


Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Unit-Dose Packaging solution
HLX
New
Urine Bone Markers Control
Lyphochek Urine Bone Markers Control
New
Automated Cell Counter
QuadCount

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: The bowel cancer breakthrough could result in better treatment outcomes (Photo courtesy of 123RF)

New RNA Molecules Can Help Predict Bowel Cancer Return Recurrence

Colorectal cancer accounts for 10% of all cancer-related deaths worldwide and was ranked as the second most common cause of cancer death in the United States in 2022. Currently, clinicians face diagnostic... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image

AI-Based Method Shows Promise for Pathological Diagnosis of Hereditary Kidney Diseases

Alport syndrome is a hereditary kidney disorder characterized by kidney dysfunction, sensorineural hearing loss, and ocular abnormalities. Early in the disease, patients experience hematuria, which is... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.